Suppr超能文献

评估生成对抗网络以提高数字乳腺断层合成期间的图像质量并降低辐射剂量

Evaluation of a Generative Adversarial Network to Improve Image Quality and Reduce Radiation-Dose during Digital Breast Tomosynthesis.

作者信息

Gomi Tsutomu, Kijima Yukie, Kobayashi Takayuki, Koibuchi Yukio

机构信息

School of Allied Health Sciences, Kitasato University, Sagamihara 252-0373, Kanagawa, Japan.

Department of Radiology, National Hospital Organization Takasaki General Medical Center, Takasaki 370-0829, Gunma, Japan.

出版信息

Diagnostics (Basel). 2022 Feb 14;12(2):495. doi: 10.3390/diagnostics12020495.

Abstract

In this study, we evaluated the improvement of image quality in digital breast tomosynthesis under low-radiation dose conditions of pre-reconstruction processing using conditional generative adversarial networks [cGAN (pix2pix)]. Pix2pix pre-reconstruction processing with filtered back projection (FBP) was compared with and without multiscale bilateral filtering (MSBF) during pre-reconstruction processing. Noise reduction and preserve contrast rates were compared using full width at half-maximum (FWHM), contrast-to-noise ratio (CNR), peak signal-to-noise ratio (PSNR), and structural similarity (SSIM) in the in-focus plane using a BR3D phantom at various radiation doses [reference-dose (automatic exposure control reference dose: AECrd), 50% and 75% reduction of AECrd] and phantom thicknesses (40 mm, 50 mm, and 60 mm). The overall performance of pix2pix pre-reconstruction processing was effective in terms of FWHM, PSNR, and SSIM. At ~50% radiation-dose reduction, FWHM yielded good results independently of the microcalcification size used in the BR3D phantom, and good noise reduction and preserved contrast. PSNR results showed that pix2pix pre-reconstruction processing represented the minimum in the error with reference FBP images at an approximately 50% reduction in radiation-dose. SSIM analysis indicated that pix2pix pre-reconstruction processing yielded superior similarity when compared with and without MSBF pre-reconstruction processing at ~50% radiation-dose reduction, with features most similar to the reference FBP images. Thus, pix2pix pre-reconstruction processing is promising for reducing noise with preserve contrast and radiation-dose reduction in clinical practice.

摘要

在本研究中,我们评估了在使用条件生成对抗网络[cGAN(pix2pix)]进行重建前处理的低辐射剂量条件下,数字乳腺断层合成中图像质量的改善情况。将pix2pix重建前处理与带滤波反投影(FBP)且在重建前处理过程中有无多尺度双边滤波(MSBF)的情况进行了比较。在不同辐射剂量[参考剂量(自动曝光控制参考剂量:AECrd)、AECrd降低50%和75%]以及不同体模厚度(40mm、50mm和60mm)下,使用BR3D体模,通过半高宽(FWHM)、对比度噪声比(CNR)、峰值信噪比(PSNR)和结构相似性(SSIM),在聚焦平面比较了降噪和对比度保留率。pix2pix重建前处理在FWHM、PSNR和SSIM方面的整体性能是有效的。在辐射剂量降低约50%时,FWHM无论BR3D体模中使用的微钙化大小如何,都能产生良好的结果,并且具有良好的降噪和对比度保留效果。PSNR结果表明,pix2pix重建前处理在辐射剂量降低约50%时,与参考FBP图像相比,误差最小。SSIM分析表明,在辐射剂量降低约50%时,与有和没有MSBF重建前处理相比,pix2pix重建前处理产生了更高的相似性,其特征与参考FBP图像最相似。因此,pix2pix重建前处理在临床实践中对于降低噪声、保留对比度和减少辐射剂量具有广阔前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8fb8/8871529/f5f05a03bf37/diagnostics-12-00495-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验