Department of Mathematics, University of Louisville, Louisville, KY 40292, USA.
BMC Bioinformatics. 2010 Feb 19;11:95. doi: 10.1186/1471-2105-11-95.
BACKGROUND: It has been long well known that genes do not act alone; rather groups of genes act in consort during a biological process. Consequently, the expression levels of genes are dependent on each other. Experimental techniques to detect such interacting pairs of genes have been in place for quite some time. With the advent of microarray technology, newer computational techniques to detect such interaction or association between gene expressions are being proposed which lead to an association network. While most microarray analyses look for genes that are differentially expressed, it is of potentially greater significance to identify how entire association network structures change between two or more biological settings, say normal versus diseased cell types. RESULTS: We provide a recipe for conducting a differential analysis of networks constructed from microarray data under two experimental settings. At the core of our approach lies a connectivity score that represents the strength of genetic association or interaction between two genes. We use this score to propose formal statistical tests for each of following queries: (i) whether the overall modular structures of the two networks are different, (ii) whether the connectivity of a particular set of "interesting genes" has changed between the two networks, and (iii) whether the connectivity of a given single gene has changed between the two networks. A number of examples of this score is provided. We carried out our method on two types of simulated data: Gaussian networks and networks based on differential equations. We show that, for appropriate choices of the connectivity scores and tuning parameters, our method works well on simulated data. We also analyze a real data set involving normal versus heavy mice and identify an interesting set of genes that may play key roles in obesity. CONCLUSIONS: Examining changes in network structure can provide valuable information about the underlying biochemical pathways. Differential network analysis with appropriate connectivity scores is a useful tool in exploring changes in network structures under different biological conditions. An R package of our tests can be downloaded from the supplementary website http://www.somnathdatta.org/Supp/DNA.
背景:众所周知,基因并非单独起作用;而是在生物过程中,一组基因协同作用。因此,基因的表达水平是相互依赖的。检测这种相互作用的基因对的实验技术已经存在了相当长的一段时间。随着微阵列技术的出现,提出了新的计算技术来检测基因表达之间的这种相互作用或关联,从而形成关联网络。虽然大多数微阵列分析都在寻找差异表达的基因,但更有意义的是确定两个或更多生物学环境(例如正常与患病细胞类型)之间整个关联网络结构如何变化。
结果:我们提供了一种在两种实验设置下对微阵列数据构建的网络进行差异分析的方法。我们方法的核心是一个连接性评分,代表两个基因之间遗传关联或相互作用的强度。我们使用这个分数来提出正式的统计检验,用于以下每个查询:(i)两个网络的整体模块结构是否不同,(ii)两个网络之间“感兴趣基因”的连接性是否发生变化,以及(iii)给定单个基因的连接性是否发生变化。提供了该分数的一些示例。我们在两种类型的模拟数据上进行了我们的方法:高斯网络和基于微分方程的网络。我们表明,对于连接性评分和调整参数的适当选择,我们的方法在模拟数据上效果良好。我们还分析了涉及正常与肥胖老鼠的真实数据集,并确定了一组可能在肥胖中起关键作用的有趣基因。
结论:检查网络结构的变化可以提供有关潜在生化途径的有价值信息。使用适当连接性评分的差异网络分析是探索不同生物学条件下网络结构变化的有用工具。我们的测试的 R 包可以从补充网站 http://www.somnathdatta.org/Supp/DNA 下载。
BMC Bioinformatics. 2010-2-19
BMC Bioinformatics. 2009-10-14
J Bioinform Comput Biol. 2012-2
J Comput Biol. 2008-9
Stat Appl Genet Mol Biol. 2011-8-9
Methods Mol Biol. 2018
BMC Bioinformatics. 2009-3-17
BMC Bioinformatics. 2023-1-9
Comput Struct Biotechnol J. 2022-11-24
Bioinformatics. 2022-11-15
Wiley Interdiscip Rev Comput Stat. 2022
BMC Bioinformatics. 2022-6-15
Front Genet. 2022-5-4
IEEE/ACM Trans Comput Biol Bioinform. 2010
Curr Opin Biotechnol. 2008-10
BMC Bioinformatics. 2008-7-9
BMC Bioinformatics. 2006-3-20
Stat Appl Genet Mol Biol. 2005
BMC Bioinformatics. 2006-1-26