文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种基于微阵列数据的差异网络分析的统计框架。

A statistical framework for differential network analysis from microarray data.

机构信息

Department of Mathematics, University of Louisville, Louisville, KY 40292, USA.

出版信息

BMC Bioinformatics. 2010 Feb 19;11:95. doi: 10.1186/1471-2105-11-95.


DOI:10.1186/1471-2105-11-95
PMID:20170493
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC2838870/
Abstract

BACKGROUND: It has been long well known that genes do not act alone; rather groups of genes act in consort during a biological process. Consequently, the expression levels of genes are dependent on each other. Experimental techniques to detect such interacting pairs of genes have been in place for quite some time. With the advent of microarray technology, newer computational techniques to detect such interaction or association between gene expressions are being proposed which lead to an association network. While most microarray analyses look for genes that are differentially expressed, it is of potentially greater significance to identify how entire association network structures change between two or more biological settings, say normal versus diseased cell types. RESULTS: We provide a recipe for conducting a differential analysis of networks constructed from microarray data under two experimental settings. At the core of our approach lies a connectivity score that represents the strength of genetic association or interaction between two genes. We use this score to propose formal statistical tests for each of following queries: (i) whether the overall modular structures of the two networks are different, (ii) whether the connectivity of a particular set of "interesting genes" has changed between the two networks, and (iii) whether the connectivity of a given single gene has changed between the two networks. A number of examples of this score is provided. We carried out our method on two types of simulated data: Gaussian networks and networks based on differential equations. We show that, for appropriate choices of the connectivity scores and tuning parameters, our method works well on simulated data. We also analyze a real data set involving normal versus heavy mice and identify an interesting set of genes that may play key roles in obesity. CONCLUSIONS: Examining changes in network structure can provide valuable information about the underlying biochemical pathways. Differential network analysis with appropriate connectivity scores is a useful tool in exploring changes in network structures under different biological conditions. An R package of our tests can be downloaded from the supplementary website http://www.somnathdatta.org/Supp/DNA.

摘要

背景:众所周知,基因并非单独起作用;而是在生物过程中,一组基因协同作用。因此,基因的表达水平是相互依赖的。检测这种相互作用的基因对的实验技术已经存在了相当长的一段时间。随着微阵列技术的出现,提出了新的计算技术来检测基因表达之间的这种相互作用或关联,从而形成关联网络。虽然大多数微阵列分析都在寻找差异表达的基因,但更有意义的是确定两个或更多生物学环境(例如正常与患病细胞类型)之间整个关联网络结构如何变化。

结果:我们提供了一种在两种实验设置下对微阵列数据构建的网络进行差异分析的方法。我们方法的核心是一个连接性评分,代表两个基因之间遗传关联或相互作用的强度。我们使用这个分数来提出正式的统计检验,用于以下每个查询:(i)两个网络的整体模块结构是否不同,(ii)两个网络之间“感兴趣基因”的连接性是否发生变化,以及(iii)给定单个基因的连接性是否发生变化。提供了该分数的一些示例。我们在两种类型的模拟数据上进行了我们的方法:高斯网络和基于微分方程的网络。我们表明,对于连接性评分和调整参数的适当选择,我们的方法在模拟数据上效果良好。我们还分析了涉及正常与肥胖老鼠的真实数据集,并确定了一组可能在肥胖中起关键作用的有趣基因。

结论:检查网络结构的变化可以提供有关潜在生化途径的有价值信息。使用适当连接性评分的差异网络分析是探索不同生物学条件下网络结构变化的有用工具。我们的测试的 R 包可以从补充网站 http://www.somnathdatta.org/Supp/DNA 下载。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d1a/2838870/5f13fb707544/1471-2105-11-95-2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d1a/2838870/074621c8381e/1471-2105-11-95-1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d1a/2838870/5f13fb707544/1471-2105-11-95-2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d1a/2838870/074621c8381e/1471-2105-11-95-1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d1a/2838870/5f13fb707544/1471-2105-11-95-2.jpg

相似文献

[1]
A statistical framework for differential network analysis from microarray data.

BMC Bioinformatics. 2010-2-19

[2]
STARNET 2: a web-based tool for accelerating discovery of gene regulatory networks using microarray co-expression data.

BMC Bioinformatics. 2009-10-14

[3]
Ranking differential hubs in gene co-expression networks.

J Bioinform Comput Biol. 2012-2

[4]
Weighted lasso in graphical Gaussian modeling for large gene network estimation based on microarray data.

Genome Inform. 2007

[5]
Network legos: building blocks of cellular wiring diagrams.

J Comput Biol. 2008-9

[6]
Differential regulation enrichment analysis via the integration of transcriptional regulatory network and gene expression data.

Bioinformatics. 2015-2-15

[7]
Smoothing gene expression data with network information improves consistency of regulated genes.

Stat Appl Genet Mol Biol. 2011-8-9

[8]
Building Molecular Interaction Networks from Microarray Data for Drug Target Screening.

Methods Mol Biol. 2018

[9]
Statistical analysis of differential gene expression relative to a fold change threshold on NanoString data of mouse odorant receptor genes.

BMC Bioinformatics. 2014-2-4

[10]
Statistical identification of gene association by CID in application of constructing ER regulatory network.

BMC Bioinformatics. 2009-3-17

引用本文的文献

[1]
Species specificity and specificity diversity (SSD) framework: a novel method for detecting the unique and enriched species associated with disease by leveraging the microbiome heterogeneity.

BMC Biol. 2024-12-5

[2]
Revisiting microgenderome: detecting and cataloguing sexually unique and enriched species in human microbiomes.

BMC Biol. 2024-12-5

[3]
Identification of shared biological features in four different lung cell lines infected with SARS-CoV-2 virus through RNA-seq analysis.

Front Genet. 2023-8-16

[4]
MOBILE pipeline enables identification of context-specific networks and regulatory mechanisms.

Nat Commun. 2023-7-6

[5]
A pseudo-value regression approach for differential network analysis of co-expression data.

BMC Bioinformatics. 2023-1-9

[6]
Data-driven analysis and druggability assessment methods to accelerate the identification of novel cancer targets.

Comput Struct Biotechnol J. 2022-11-24

[7]
SpaceX: gene co-expression network estimation for spatial transcriptomics.

Bioinformatics. 2022-11-15

[8]
SAREV: A review on statistical analytics of single-cell RNA sequencing data.

Wiley Interdiscip Rev Comput Stat. 2022

[9]
Identifying network biomarkers of cancer by sample-specific differential network.

BMC Bioinformatics. 2022-6-15

[10]
Unraveling T Cell Responses for Long Term Protection of SARS-CoV-2 Infection.

Front Genet. 2022-5-4

本文引用的文献

[1]
Gene association networks from microarray data using a regularized estimation of partial correlation based on PLS regression.

IEEE/ACM Trans Comput Biol Bioinform. 2010

[2]
Neuroendocrine and immune network re-modeling in chronic fatigue syndrome: an exploratory analysis.

Genomics. 2008-12

[3]
Gene module level analysis: identification to networks and dynamics.

Curr Opin Biotechnol. 2008-10

[4]
A unified approach to false discovery rate estimation.

BMC Bioinformatics. 2008-7-9

[5]
Reconstruction of genetic association networks from microarray data: a partial least squares approach.

Bioinformatics. 2008-2-15

[6]
Weighted gene coexpression network analysis strategies applied to mouse weight.

Mamm Genome. 2007-7

[7]
Differential gene expression patterns and interaction networks in BCR-ABL-positive and -negative adult acute lymphoblastic leukemias.

J Clin Oncol. 2007-4-10

[8]
ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context.

BMC Bioinformatics. 2006-3-20

[9]
A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics.

Stat Appl Genet Mol Biol. 2005

[10]
SynTReN: a generator of synthetic gene expression data for design and analysis of structure learning algorithms.

BMC Bioinformatics. 2006-1-26

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索