Suppr超能文献

在自主运动期间比较 ActiGraph 7164 和 ActiGraph GT1M。

Comparison of the ActiGraph 7164 and the ActiGraph GT1M during self-paced locomotion.

机构信息

Department of Kinesiology, University of Massachusetts, Amherst, MA, USA.

出版信息

Med Sci Sports Exerc. 2010 May;42(5):971-6. doi: 10.1249/MSS.0b013e3181c29e90.

Abstract

PURPOSE

This study compared the ActiGraph accelerometer model 7164 (AM1) with the ActiGraph GT1M (AM2) during self-paced locomotion.

METHODS

Participants (n = 116, aged 18-73 yr, mean body mass index = 26.1 kg x m(-2)) walked at self-selected slow, medium, and fast speeds around an indoor circular hallway (0.47 km). Both activity monitors were attached to a belt secured to the hip and simultaneously collected data in 60-s epochs. To compare differences between monitors, the average difference (bias) in count output and steps output was computed at each speed. Time spent in different activity intensities (light, moderate, and vigorous) based on the cut points of Freedson et al. was compared for each minute.

RESULTS

The mean +/- SD walking speed was 0.7 +/- 0.22 m x s(-1) for the slow speed, 1.3 +/- 0.17 m x s(-1) for medium, and 2.1 +/- 0.61 m x s(-1) for fast speeds. Ninety-five percent confidence intervals (95% CI) were used to determine significance. Across all speeds, step output was significantly higher for the AM1 (bias = 19.8%, 95% CI = -23.2% to -16.4%) because of the large differences in step output at slow speed. The count output from AM2 was a significantly higher (2.7%, 95% CI = 0.8%-4.7%) than that from AM1. Overall, 96.1% of the minutes were classified into the same MET intensity category by both monitors.

CONCLUSIONS

The step output between models was not comparable at slow speeds, and comparisons of step data collected with both models should be interpreted with caution. The count output from AM2 was slightly but significantly higher than that from AM1 during the self-paced locomotion, but this difference did not result in meaningful differences in activity intensity classifications. Thus, data collected with AM1 should be comparable to AM2 across studies for estimating habitual activity levels.

摘要

目的

本研究比较了自主步行过程中 ActiGraph 加速度计模型 7164(AM1)与 ActiGraph GT1M(AM2)。

方法

参与者(n=116,年龄 18-73 岁,平均体重指数=26.1kg/m²)在室内圆形走廊(0.47km)以自定的慢、中、快速度行走。两个活动监测器均固定在腰带上,并同时以 60 秒为一个时间段记录数据。为了比较监测器之间的差异,在每个速度下计算计数输出和步数输出的平均差异(偏差)。根据 Freedson 等人的切点,比较每分钟不同活动强度(轻度、中度和剧烈)的时间。

结果

慢速度的平均步行速度为 0.7±0.22m/s,中速度为 1.3±0.17m/s,快速度为 2.1±0.61m/s。95%置信区间(95%CI)用于确定显著性。在所有速度下,由于慢速度下步幅输出的差异较大,AM1 的步幅输出(偏差=19.8%,95%CI=-23.2%至-16.4%)明显更高。AM2 的计数值输出(2.7%,95%CI=0.8%-4.7%)明显高于 AM1。总体而言,96.1%的分钟被两个监测器归类为相同的代谢当量强度类别。

结论

在慢速度下,两种模型的步幅输出不可比,对两种模型收集的步幅数据的比较应谨慎解读。在自主步行过程中,AM2 的计数值输出略高于 AM1,但这种差异并未导致活动强度分类的有意义差异。因此,在估计习惯性活动水平方面,AM1 收集的数据应与 AM2 在研究中具有可比性。

相似文献

1
Comparison of the ActiGraph 7164 and the ActiGraph GT1M during self-paced locomotion.
Med Sci Sports Exerc. 2010 May;42(5):971-6. doi: 10.1249/MSS.0b013e3181c29e90.
2
Comparison of four ActiGraph accelerometers during walking and running.
Med Sci Sports Exerc. 2010 Feb;42(2):368-74. doi: 10.1249/MSS.0b013e3181b3af49.
3
Effects of body mass index on step count accuracy of physical activity monitors.
J Phys Act Health. 2012 May;9(4):594-600. doi: 10.1123/jpah.9.4.594. Epub 2011 May 17.
4
A catalog of validity indices for step counting wearable technologies during treadmill walking: the CADENCE-Kids study.
Int J Behav Nutr Phys Act. 2021 Jul 16;18(1):97. doi: 10.1186/s12966-021-01167-y.
6
A comparison of the Actigraph GT1M and GT3X accelerometers under standardized and free-living conditions.
Physiol Meas. 2012 Nov;33(11):1869-76. doi: 10.1088/0967-3334/33/11/1869. Epub 2012 Oct 31.
7
Validity of the Actical activity monitor for assessing steps and energy expenditure during walking.
J Sports Sci. 2015;33(8):769-76. doi: 10.1080/02640414.2014.964747. Epub 2014 Oct 30.
9
Mechanical and free living comparisons of four generations of the Actigraph activity monitor.
Int J Behav Nutr Phys Act. 2012 Sep 12;9:113. doi: 10.1186/1479-5868-9-113.
10
Children's physical activity assessed with wrist- and hip-worn accelerometers.
Med Sci Sports Exerc. 2014 Dec;46(12):2308-16. doi: 10.1249/MSS.0000000000000365.

引用本文的文献

3
Joint Temporal Patterns By Integrating Diet and Physical Activity.
medRxiv. 2023 Jan 26:2023.01.23.23284780. doi: 10.1101/2023.01.23.23284780.
4
Cluster Analysis to Find Temporal Physical Activity Patterns Among US Adults.
medRxiv. 2023 Jan 26:2023.01.23.23284777. doi: 10.1101/2023.01.23.23284777.
5
The association of moderate-to-vigorous and light-intensity physical activity on static balance in middle-aged and older-aged adults.
Aging Clin Exp Res. 2023 Mar;35(3):541-550. doi: 10.1007/s40520-023-02344-8. Epub 2023 Jan 25.
6
A function-based approach to model the measurement error in wearable devices.
Stat Med. 2022 Oct 30;41(24):4886-4902. doi: 10.1002/sim.9542. Epub 2022 Aug 29.
7
Activity measurement in pediatric chronic fatigue syndrome.
Chronic Illn. 2022 Jun;18(2):268-276. doi: 10.1177/1742395320949613. Epub 2020 Aug 17.

本文引用的文献

1
Accelerometer-determined steps per day in US adults.
Med Sci Sports Exerc. 2009 Jul;41(7):1384-91. doi: 10.1249/MSS.0b013e318199885c.
3
Comparing the performance of three generations of ActiGraph accelerometers.
J Appl Physiol (1985). 2008 Oct;105(4):1091-7. doi: 10.1152/japplphysiol.90641.2008. Epub 2008 Jul 17.
4
Revisiting "how many steps are enough?".
Med Sci Sports Exerc. 2008 Jul;40(7 Suppl):S537-43. doi: 10.1249/MSS.0b013e31817c7133.
5
Amount of time spent in sedentary behaviors in the United States, 2003-2004.
Am J Epidemiol. 2008 Apr 1;167(7):875-81. doi: 10.1093/aje/kwm390. Epub 2008 Feb 25.
6
Physical activity in the United States measured by accelerometer.
Med Sci Sports Exerc. 2008 Jan;40(1):181-8. doi: 10.1249/mss.0b013e31815a51b3.
7
Comparison of two Actigraph models for assessing free-living physical activity in Indian adolescents.
J Sports Sci. 2007 Dec;25(14):1607-11. doi: 10.1080/02640410701283841.
9
Accelerometers and pedometers: methodology and clinical application.
Curr Opin Clin Nutr Metab Care. 2007 Sep;10(5):597-603. doi: 10.1097/MCO.0b013e328285d883.
10
An artificial neural network model of energy expenditure using nonintegrated acceleration signals.
J Appl Physiol (1985). 2007 Oct;103(4):1419-27. doi: 10.1152/japplphysiol.00429.2007. Epub 2007 Jul 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验