Suppr超能文献

人工智能在诊断中的应用:原理、程序和局限性。

Artificial intelligence for diagnostic purposes: principles, procedures and limitations.

机构信息

European College Pharmaceutical Medicine, Lyon, France.

出版信息

Clin Chem Lab Med. 2010 Feb;48(2):159-65. doi: 10.1515/CCLM.2010.045.

Abstract

BACKGROUND

Back propagation (BP) artificial neural networks are a distribution-free method for data analysis based on layers of artificial neurons that transduce imputed information. It has been recognized as having a number of advantages compared to traditional methods including the possibility to process imperfect data, and complex non-linear data. The objective of this study was to review the principles, procedures, and limitations of BP artificial neural networks for a non-mathematical readership.

METHODS

A real data sample of weight, height and measured body surface area from 90 individuals was used as an example. SPSS 17.0 with neural network add-on was used for the analysis. The predicted body surface from a two hidden layer BP neural network was compared to the body surface calculated by the Haycock equation.

RESULTS

Both the predicted values from the neural network and from the Haycock equation were close to the measured values. A linear regression analysis with neural network as predictor produced an r(2)-value of 0.983, while the Haycock equation produced an r(2)-value of 0.995 (r(2)>0.95 is a criterion for accurate diagnostic testing).

CONCLUSIONS

BP neural networks may, sometimes, predict clinical diagnoses with accuracies similar to those of other methods. However, traditional statistical procedures, such as regression analyses need to be added for testing their accuracies against alternative methods. Nonetheless, BP neural networks have great potential through their ability to learn by example instead of learning by theory.

摘要

背景

反向传播(BP)人工神经网络是一种基于人工神经元层的无分布数据分析方法,可转换输入信息。与传统方法相比,它具有许多优势,包括处理不完美数据和复杂非线性数据的可能性。本研究的目的是为非数学读者综述 BP 人工神经网络的原理、程序和局限性。

方法

使用 90 个人的体重、身高和实测体表面积的真实数据样本作为示例。使用带有神经网络附加组件的 SPSS 17.0 进行分析。将两层 BP 神经网络预测的体表面积与 Haycock 方程计算的体表面积进行比较。

结果

神经网络和 Haycock 方程的预测值均接近实测值。使用神经网络作为预测因子的线性回归分析产生 r(2)-值为 0.983,而 Haycock 方程产生 r(2)-值为 0.995(r(2)>0.95 是准确诊断测试的标准)。

结论

BP 神经网络有时可以预测临床诊断,其准确性与其他方法相似。但是,需要添加传统的统计程序(如回归分析)来测试其相对于替代方法的准确性。尽管如此,BP 神经网络通过能够通过示例学习而不是通过理论学习,具有很大的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验