Jining No. 1 People's Hospital Affiliated to Shandong First Medical University, Jining, Shandong, China.
Pulmonary and Critical Care Medicine, Tengzhou Central People's Hospital, Tengzhou City, Shandong Province, People's Republic of China.
PLoS One. 2024 Sep 9;19(9):e0309748. doi: 10.1371/journal.pone.0309748. eCollection 2024.
Candidemia often poses a diagnostic challenge due to the lack of specific clinical features, and delayed antifungal therapy can significantly increase mortality rates, particularly in the intensive care unit (ICU). This study aims to develop a machine learning predictive model for early candidemia diagnosis in ICU patients, leveraging their clinical information and findings. We conducted this study with a cohort of 334 patients admitted to the ICU unit at Ji Ning NO.1 people's hospital in China from Jan. 2015 to Dec. 2022. To ensure the model's reliability, we validated this model with an external group consisting of 77 patients from other sources. The candidemia to bacteremia ratio is 1:1. We collected relevant clinical procedures and eighteen key examinations or tests features to support the recursive feature elimination (RFE) algorithm. These features included total bilirubin, age, platelet count, hemoglobin, CVC, lymphocyte, Duration of stay in ICU and so on. To construct the candidemia diagnosis model, we employed random forest (RF) algorithm alongside other machine learning methods and conducted internal and external validation with training and testing sets allocated in a 7:3 ratio. The RF model demonstrated the highest area under the receiver operating characteristic (AUC) with values of 0.87 and 0.83 for internal and external validation, respectively. To evaluate the importance of features in predicting candidemia, Shapley additive explanation (SHAP) values were calculated and results revealed that total bilirubin and age were the most important factors in the prediction model. This advancement in candidemia prediction holds significant promise for early intervention and improved patient outcomes in the ICU setting, where timely diagnosis is of paramount crucial.
念珠菌血症由于缺乏特异性的临床特征,常常给诊断带来挑战,而延迟抗真菌治疗会显著增加死亡率,尤其是在重症监护病房(ICU)。本研究旨在开发一种基于机器学习的 ICU 患者念珠菌血症早期诊断预测模型,利用患者的临床信息和检查结果。我们对 2015 年 1 月至 2022 年 12 月期间入住中国济宁第一人民医院 ICU 病房的 334 例患者进行了这项研究。为了确保模型的可靠性,我们使用来自其他来源的 77 例患者的外部组对此模型进行了验证。念珠菌血症与菌血症的比例为 1:1。我们收集了相关的临床程序和 18 项关键检查或测试特征,以支持递归特征消除(RFE)算法。这些特征包括总胆红素、年龄、血小板计数、血红蛋白、CVC、淋巴细胞、ICU 住院时间等。为了构建念珠菌血症诊断模型,我们采用了随机森林(RF)算法以及其他机器学习方法,并使用 7:3 的比例分配训练集和测试集进行内部和外部验证。RF 模型在内部和外部验证中的 AUC 值分别为 0.87 和 0.83,表现出最高的受试者工作特征(ROC)曲线下面积。为了评估特征在预测念珠菌血症中的重要性,我们计算了 Shapley 加性解释(SHAP)值,结果表明总胆红素和年龄是预测模型中最重要的因素。这一在念珠菌血症预测方面的进展,为 ICU 环境中的早期干预和改善患者预后提供了重要的支持,因为在 ICU 环境中,及时诊断至关重要。