Department of Physiology and Biophysics, Albert Einstein College of Medicine, Yeshiva University, 1300 Morris Park Avenue, Ullmann, Room 316, Bronx, NY 10461, USA.
J Mol Cell Cardiol. 2010 May;48(5):979-88. doi: 10.1016/j.yjmcc.2009.11.018. Epub 2009 Dec 31.
Familial hypertrophic cardiomyopathy, FHC, is a clinically heterogeneous, autosomal-dominant disease of the cardiac sarcomere leading to extensive remodeling at both the whole heart and molecular levels. The remodeling patterns are mutation-specific, a finding that extends to the level of single amino acid substitutions at the same peptide residue. Here we utilize two well-characterized transgenic FHC mouse models carrying independent amino acid substitutions in the TM-binding region of cardiac troponin T (cTnT) at residue 92. R92Q and R92L cTnT domains have mutation-specific average peptide conformation and dynamics sufficient to alter thin filament flexibility and cross-bridge formation and R92 mutant myocytes demonstrate mutation-specific temporal molecular remodeling of Ca(2+) kinetics and impaired cardiac contractility and relaxation. To determine if a greater economy of contraction at the crossbridge level would rescue the mechanical defects caused by the R92 cTnT mutations, we replaced the endogenous murine alpha-myosin heavy chain (MyHC) with the beta-MyHC isoform. While beta-MyHC replacement rescued the systolic dysfunction in R92Q mice, it failed to rescue the defects in diastolic function common to FHC-associated R92 mutations. Surprisingly, a significant component of the whole heart and molecular contractile improvement in the R92Q mice was due to improvements in Ca(2+) homeostasis including SR uptake, Ca2+ amplitude and phospholamban phosphorylation. Our data demonstrate that while genetically altering the myosin composition of the heart bearing a thin filament FHC mutation is sufficient to improve contractility, diastolic performance is refractory despite improved Ca(2+) kinetics. These data reveal a previously unrecognized role for MyHC isoforms with respect to Ca(2+) homeostasis in the setting of cardiomyopathic remodeling and demonstrate the overall dominance of the thin filament mutation in determining the degree of diastolic impairment at the myofilament level.
家族性肥厚型心肌病(FHC)是一种临床异质性的常染色体显性心肌肌节疾病,导致整个心脏和分子水平的广泛重构。重构模式是突变特异性的,这一发现扩展到同一肽残基处的单个氨基酸取代的水平。在这里,我们利用两个经过充分表征的携带独立氨基酸取代的 FHC 转基因小鼠模型,这些取代发生在心肌肌钙蛋白 T(cTnT)的 TM 结合区域的 92 号氨基酸。R92Q 和 R92L cTnT 结构域具有足够改变细肌丝灵活性和横桥形成的突变特异性平均肽构象和动力学,并且 R92 突变肌细胞表现出 Ca(2+)动力学和受损的心脏收缩和舒张的突变特异性时间分子重构。为了确定在横桥水平上更大的收缩经济性是否可以挽救 R92 cTnT 突变引起的机械缺陷,我们用β-MyHC 同工型取代了内源性的鼠α-肌球蛋白重链(MyHC)。虽然β-MyHC 取代挽救了 R92Q 小鼠的收缩功能障碍,但它未能挽救与 FHC 相关的 R92 突变共有的舒张功能障碍。令人惊讶的是,R92Q 小鼠整个心脏和分子收缩改善的一个重要组成部分是由于 Ca(2+)稳态的改善,包括 SR 摄取、[Ca2+](i)幅度和肌浆网磷蛋白磷酸化。我们的数据表明,尽管改变携带细肌丝 FHC 突变的心脏的肌球蛋白组成足以改善收缩性,但尽管 Ca(2+)动力学得到改善,舒张性能仍难以恢复。这些数据揭示了肌球蛋白同工型在心肌病重构背景下对 Ca(2+)稳态的以前未被认识的作用,并表明在肌丝水平上确定舒张功能障碍程度的薄肌丝突变的总体主导地位。