Suppr超能文献

嗜热球菌科达杆菌遗传学:TK1827 编码的β-糖苷酶、新的正选择方案以及靶向和重复缺失技术。

Thermococcus kodakarensis genetics: TK1827-encoded beta-glycosidase, new positive-selection protocol, and targeted and repetitive deletion technology.

机构信息

Department of Microbiology, Ohio State University, Columbus, OH 43210, USA.

出版信息

Appl Environ Microbiol. 2010 Feb;76(4):1044-52. doi: 10.1128/AEM.02497-09. Epub 2009 Dec 18.

Abstract

Inactivation of TK1761, the reporter gene established for Thermococcus kodakarensis, revealed the presence of a second beta-glycosidase that we have identified as the product of TK1827. This enzyme (pTK1827) has been purified and shown to hydrolyze glucopyranoside but not mannopyranoside, have optimal activity at 95 degrees C and from pH 8 to 9.5, and have a functional half-life of approximately 7 min at 100 degrees C. To generate a strain with both TK1761 and TK1827 deleted, a new selection/counterselection protocol has been developed, and the levels of beta-glycosidase activity in T. kodakarensis strains with TK1761 and/or TK1827 deleted and with these genes expressed from heterologous promoters are described. Genetic tools and strains have been developed that extend the use of this selection/counterselection procedure to delete any nonessential gene from the T. kodakarensis chromosome. Using this technology, TK0149 was deleted to obtain an agmatine auxotroph that grows on nutrient-rich medium only when agmatine is added. Transformants can therefore be selected rapidly, and replicating plasmids can be maintained in this strain growing in rich medium by complementation of the TK0149 deletion.

摘要

热球菌 TK1761 的失活,该基因是为 Thermococcus kodakarensis 建立的报告基因,揭示了第二种β-糖苷酶的存在,我们已经将其鉴定为 TK1827 的产物。该酶(pTK1827)已被纯化,并显示出水解吡喃葡萄糖苷但不水解吡喃甘露糖苷的活性,在 95°C 和 pH8 到 9.5 之间具有最佳活性,在 100°C 下的功能半衰期约为 7 分钟。为了生成同时缺失 TK1761 和 TK1827 的菌株,开发了一种新的选择/反选择方案,并描述了缺失 TK1761 和/或 TK1827 的 T. kodakarensis 菌株以及这些基因从异源启动子表达的β-糖苷酶活性水平。已经开发出遗传工具和菌株,将这种选择/反选择程序的用途扩展到从 T. kodakarensis 染色体中删除任何非必需基因。使用这项技术,我们删除了 TK0149 基因,得到了一种精氨酸营养缺陷型菌株,只有在添加精氨酸时才能在营养丰富的培养基上生长。因此,可以快速选择转化体,并且可以通过 TK0149 缺失的互补来维持在这种在丰富培养基中生长的菌株中的复制质粒。

相似文献

2
Polarity in archaeal operon transcription in Thermococcus kodakaraensis.
J Bacteriol. 2008 Mar;190(6):2244-8. doi: 10.1128/JB.01811-07. Epub 2008 Jan 11.
3
Exchange of active site residues alters substrate specificity in extremely thermostable β-glycosidase from Thermococcus kodakarensis KOD1.
Enzyme Microb Technol. 2015 Sep;77:14-20. doi: 10.1016/j.enzmictec.2015.05.002. Epub 2015 May 18.
4
Biochemical characterization of a recombinant pullulanase from Thermococcus kodakarensis KOD1.
Lett Appl Microbiol. 2013 Oct;57(4):336-43. doi: 10.1111/lam.12118. Epub 2013 Jul 8.
6
An archaeal histone is required for transformation of Thermococcus kodakarensis.
J Bacteriol. 2012 Dec;194(24):6864-74. doi: 10.1128/JB.01523-12. Epub 2012 Oct 12.
9
Transformation Techniques for the Anaerobic Hyperthermophile Thermococcus kodakarensis.
Methods Mol Biol. 2022;2522:87-104. doi: 10.1007/978-1-0716-2445-6_5.
10
Genetic manipulations of the hyperthermophilic piezophilic archaeon Thermococcus barophilus.
Appl Environ Microbiol. 2014 Apr;80(7):2299-306. doi: 10.1128/AEM.00084-14. Epub 2014 Jan 31.

引用本文的文献

1
A dynamic protein interactome drives energy conservation and electron flux in .
Appl Environ Microbiol. 2025 Apr 23;91(4):e0029325. doi: 10.1128/aem.00293-25. Epub 2025 Apr 3.
3
Tetraether archaeal lipids promote long-term survival in extreme conditions.
Mol Microbiol. 2024 May;121(5):882-894. doi: 10.1111/mmi.15240. Epub 2024 Feb 19.
4
A self-transmissible plasmid from a hyperthermophile that facilitates genetic modification of diverse Archaea.
Nat Microbiol. 2023 Jul;8(7):1339-1347. doi: 10.1038/s41564-023-01387-x. Epub 2023 Jun 5.
5
Biochemical and genetic examination of two aminotransferases from the hyperthermophilic archaeon .
Front Microbiol. 2023 Feb 20;14:1126218. doi: 10.3389/fmicb.2023.1126218. eCollection 2023.
6
Transformation Techniques for the Anaerobic Hyperthermophile Thermococcus kodakarensis.
Methods Mol Biol. 2022;2522:87-104. doi: 10.1007/978-1-0716-2445-6_5.
8
Thermococcus kodakarensis provides a versatile hyperthermophilic archaeal platform for protein expression.
Methods Enzymol. 2021;659:243-273. doi: 10.1016/bs.mie.2021.06.014. Epub 2021 Jul 13.
9
Heterologous gene expression and characterization of two serine hydroxymethyltransferases from Thermoplasma acidophilum.
Extremophiles. 2021 Jul;25(4):393-402. doi: 10.1007/s00792-021-01238-9. Epub 2021 Jul 1.
10
CopR, a Global Regulator of Transcription to Maintain Copper Homeostasis in .
Front Microbiol. 2021 Jan 11;11:613532. doi: 10.3389/fmicb.2020.613532. eCollection 2020.

本文引用的文献

1
Archaeal intrinsic transcription termination in vivo.
J Bacteriol. 2009 Nov;191(22):7102-8. doi: 10.1128/JB.00982-09. Epub 2009 Sep 11.
2
Pantoate kinase and phosphopantothenate synthetase, two novel enzymes necessary for CoA biosynthesis in the Archaea.
J Biol Chem. 2009 Oct 9;284(41):28137-28145. doi: 10.1074/jbc.M109.009696. Epub 2009 Aug 7.
6
Agmatine is essential for the cell growth of Thermococcus kodakaraensis.
FEMS Microbiol Lett. 2008 Oct;287(1):113-20. doi: 10.1111/j.1574-6968.2008.01303.x. Epub 2008 Aug 13.
7
Shuttle vector expression in Thermococcus kodakaraensis: contributions of cis elements to protein synthesis in a hyperthermophilic archaeon.
Appl Environ Microbiol. 2008 May;74(10):3099-104. doi: 10.1128/AEM.00305-08. Epub 2008 Mar 31.
8
Polysaccharide degradation and synthesis by extremely thermophilic anaerobes.
Ann N Y Acad Sci. 2008 Mar;1125:322-37. doi: 10.1196/annals.1419.017.
9
Polarity in archaeal operon transcription in Thermococcus kodakaraensis.
J Bacteriol. 2008 Mar;190(6):2244-8. doi: 10.1128/JB.01811-07. Epub 2008 Jan 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验