Suppr超能文献

利用独立成分分析和逆电流源密度提取神经动力学的功能成分。

Extracting functional components of neural dynamics with Independent Component Analysis and inverse Current Source Density.

作者信息

Lęski Szymon, Kublik Ewa, Swiejkowski Daniel A, Wróbel Andrzej, Wójcik Daniel K

机构信息

Department of Neurophysiology, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093, Warsaw, Poland.

出版信息

J Comput Neurosci. 2010 Dec;29(3):459-73. doi: 10.1007/s10827-009-0203-1. Epub 2009 Dec 22.

Abstract

Local field potentials have good temporal resolution but are blurred due to the slow spatial decay of the electric field. For simultaneous recordings on regular grids one can reconstruct efficiently the current sources (CSD) using the inverse Current Source Density method (iCSD). It is possible to decompose the resultant spatiotemporal information about the current dynamics into functional components using Independent Component Analysis (ICA). We show on test data modeling recordings of evoked potentials on a grid of 4 × 5 × 7 points that meaningful results are obtained with spatial ICA decomposition of reconstructed CSD. The components obtained through decomposition of CSD are better defined and allow easier physiological interpretation than the results of similar analysis of corresponding evoked potentials in the thalamus. We show that spatiotemporal ICA decompositions can perform better for certain types of sources but it does not seem to be the case for the experimental data studied. Having found the appropriate approach to decomposing neural dynamics into functional components we use the technique to study the somatosensory evoked potentials recorded on a grid spanning a large part of the forebrain. We discuss two example components associated with the first waves of activation of the somatosensory thalamus. We show that the proposed method brings up new, more detailed information on the time and spatial location of specific activity conveyed through various parts of the somatosensory thalamus in the rat.

摘要

局部场电位具有良好的时间分辨率,但由于电场的空间衰减缓慢而变得模糊。对于在规则网格上的同步记录,可以使用逆电流源密度方法(iCSD)有效地重建电流源(CSD)。使用独立成分分析(ICA)可以将关于电流动态的时空信息分解为功能成分。我们在一个4×5×7点的网格上对诱发电位记录进行测试数据建模,结果表明,对重建的CSD进行空间ICA分解可获得有意义的结果。与丘脑相应诱发电位的类似分析结果相比,通过CSD分解获得的成分定义更明确,便于进行生理解释。我们表明,时空ICA分解对于某些类型的源可能表现更好,但对于所研究的实验数据似乎并非如此。在找到将神经动力学分解为功能成分的合适方法后,我们使用该技术研究在前脑大部分区域的网格上记录的体感诱发电位。我们讨论了与体感丘脑首次激活波相关联的两个示例成分。我们表明,所提出的方法提供了关于大鼠体感丘脑中通过各个部分传递的特定活动的时间和空间位置的新的、更详细的信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验