Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA 94608, USA.
Appl Environ Microbiol. 2010 Feb;76(4):1212-23. doi: 10.1128/AEM.02312-09. Epub 2009 Dec 28.
Aliphatic hydrocarbons are highly appealing targets for advanced cellulosic biofuels, as they are already predominant components of petroleum-based gasoline and diesel fuels. We have studied alkene biosynthesis in Micrococcus luteus ATCC 4698, a close relative of Sarcina lutea (now Kocuria rhizophila), which 4 decades ago was reported to biosynthesize iso- and anteiso-branched, long-chain alkenes. The underlying biochemistry and genetics of alkene biosynthesis were not elucidated in those studies. We show here that heterologous expression of a three-gene cluster from M. luteus (Mlut_13230-13250) in a fatty acid-overproducing Escherichia coli strain resulted in production of long-chain alkenes, predominantly 27:3 and 29:3 (no. carbon atoms: no. C=C bonds). Heterologous expression of Mlut_13230 (oleA) alone produced no long-chain alkenes but unsaturated aliphatic monoketones, predominantly 27:2, and in vitro studies with the purified Mlut_13230 protein and tetradecanoyl-coenzyme A (CoA) produced the same C(27) monoketone. Gas chromatography-time of flight mass spectrometry confirmed the elemental composition of all detected long-chain alkenes and monoketones (putative intermediates of alkene biosynthesis). Negative controls demonstrated that the M. luteus genes were responsible for production of these metabolites. Studies with wild-type M. luteus showed that the transcript copy number of Mlut_13230-13250 and the concentrations of 29:1 alkene isomers (the dominant alkenes produced by this strain) generally corresponded with bacterial population over time. We propose a metabolic pathway for alkene biosynthesis starting with acyl-CoA (or-ACP [acyl carrier protein]) thioesters and involving decarboxylative Claisen condensation as a key step, which we believe is catalyzed by OleA. Such activity is consistent with our data and with the homology (including the conserved Cys-His-Asn catalytic triad) of Mlut_13230 (OleA) to FabH (beta-ketoacyl-ACP synthase III), which catalyzes decarboxylative Claisen condensation during fatty acid biosynthesis.
脂肪族烃是先进纤维素生物燃料极具吸引力的目标,因为它们已经是石油基汽油和柴油燃料的主要成分。我们研究了微球菌属 ATCC 4698 中的烯烃生物合成,该菌是 Sarcina lutea(现为 Kocuria rhizophila)的近亲,四十年前有报道称其生物合成同系和异系支链、长链烯烃。在这些研究中,烯烃生物合成的基础生物化学和遗传学尚未阐明。我们在这里表明,在脂肪酸过度产生的大肠杆菌菌株中异源表达来自微球菌属的三个基因簇(Mlut_13230-13250)导致长链烯烃的产生,主要是 27:3 和 29:3(碳原子数:双键数)。单独表达 Mlut_13230(oleA)没有产生长链烯烃,但产生了不饱和脂肪族单酮,主要是 27:2,并且用纯化的 Mlut_13230 蛋白和十四烷酰辅酶 A(CoA)进行的体外研究产生了相同的 C(27)单酮。气相色谱-飞行时间质谱法确认了所有检测到的长链烯烃和单酮(烯烃生物合成的潜在中间产物)的元素组成。阴性对照表明,微球菌属的基因负责这些代谢物的产生。对野生型微球菌属的研究表明,Mlut_13230-13250 的转录拷贝数和 29:1 烯烃异构体(该菌株产生的主要烯烃)的浓度通常与随时间推移的细菌种群相对应。我们提出了一种从酰基辅酶 A(或酰基-ACP[酰基载体蛋白]硫酯)开始的烯烃生物合成代谢途径,涉及脱羧 Claisen 缩合作为关键步骤,我们认为该步骤由 OleA 催化。这种活性与我们的数据以及 Mlut_13230(OleA)与 FabH(β-酮酰-ACP 合酶 III)的同源性(包括保守的 Cys-His-Asn 催化三联体)一致,后者在脂肪酸生物合成中催化脱羧 Claisen 缩合。