Suppr超能文献

黄色微球菌中长链烯烃生物合成相关基因。

Genes involved in long-chain alkene biosynthesis in Micrococcus luteus.

机构信息

Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA 94608, USA.

出版信息

Appl Environ Microbiol. 2010 Feb;76(4):1212-23. doi: 10.1128/AEM.02312-09. Epub 2009 Dec 28.

Abstract

Aliphatic hydrocarbons are highly appealing targets for advanced cellulosic biofuels, as they are already predominant components of petroleum-based gasoline and diesel fuels. We have studied alkene biosynthesis in Micrococcus luteus ATCC 4698, a close relative of Sarcina lutea (now Kocuria rhizophila), which 4 decades ago was reported to biosynthesize iso- and anteiso-branched, long-chain alkenes. The underlying biochemistry and genetics of alkene biosynthesis were not elucidated in those studies. We show here that heterologous expression of a three-gene cluster from M. luteus (Mlut_13230-13250) in a fatty acid-overproducing Escherichia coli strain resulted in production of long-chain alkenes, predominantly 27:3 and 29:3 (no. carbon atoms: no. C=C bonds). Heterologous expression of Mlut_13230 (oleA) alone produced no long-chain alkenes but unsaturated aliphatic monoketones, predominantly 27:2, and in vitro studies with the purified Mlut_13230 protein and tetradecanoyl-coenzyme A (CoA) produced the same C(27) monoketone. Gas chromatography-time of flight mass spectrometry confirmed the elemental composition of all detected long-chain alkenes and monoketones (putative intermediates of alkene biosynthesis). Negative controls demonstrated that the M. luteus genes were responsible for production of these metabolites. Studies with wild-type M. luteus showed that the transcript copy number of Mlut_13230-13250 and the concentrations of 29:1 alkene isomers (the dominant alkenes produced by this strain) generally corresponded with bacterial population over time. We propose a metabolic pathway for alkene biosynthesis starting with acyl-CoA (or-ACP [acyl carrier protein]) thioesters and involving decarboxylative Claisen condensation as a key step, which we believe is catalyzed by OleA. Such activity is consistent with our data and with the homology (including the conserved Cys-His-Asn catalytic triad) of Mlut_13230 (OleA) to FabH (beta-ketoacyl-ACP synthase III), which catalyzes decarboxylative Claisen condensation during fatty acid biosynthesis.

摘要

脂肪族烃是先进纤维素生物燃料极具吸引力的目标,因为它们已经是石油基汽油和柴油燃料的主要成分。我们研究了微球菌属 ATCC 4698 中的烯烃生物合成,该菌是 Sarcina lutea(现为 Kocuria rhizophila)的近亲,四十年前有报道称其生物合成同系和异系支链、长链烯烃。在这些研究中,烯烃生物合成的基础生物化学和遗传学尚未阐明。我们在这里表明,在脂肪酸过度产生的大肠杆菌菌株中异源表达来自微球菌属的三个基因簇(Mlut_13230-13250)导致长链烯烃的产生,主要是 27:3 和 29:3(碳原子数:双键数)。单独表达 Mlut_13230(oleA)没有产生长链烯烃,但产生了不饱和脂肪族单酮,主要是 27:2,并且用纯化的 Mlut_13230 蛋白和十四烷酰辅酶 A(CoA)进行的体外研究产生了相同的 C(27)单酮。气相色谱-飞行时间质谱法确认了所有检测到的长链烯烃和单酮(烯烃生物合成的潜在中间产物)的元素组成。阴性对照表明,微球菌属的基因负责这些代谢物的产生。对野生型微球菌属的研究表明,Mlut_13230-13250 的转录拷贝数和 29:1 烯烃异构体(该菌株产生的主要烯烃)的浓度通常与随时间推移的细菌种群相对应。我们提出了一种从酰基辅酶 A(或酰基-ACP[酰基载体蛋白]硫酯)开始的烯烃生物合成代谢途径,涉及脱羧 Claisen 缩合作为关键步骤,我们认为该步骤由 OleA 催化。这种活性与我们的数据以及 Mlut_13230(OleA)与 FabH(β-酮酰-ACP 合酶 III)的同源性(包括保守的 Cys-His-Asn 催化三联体)一致,后者在脂肪酸生物合成中催化脱羧 Claisen 缩合。

相似文献

1
Genes involved in long-chain alkene biosynthesis in Micrococcus luteus.
Appl Environ Microbiol. 2010 Feb;76(4):1212-23. doi: 10.1128/AEM.02312-09. Epub 2009 Dec 28.
2
Structure of FabH and factors affecting the distribution of branched fatty acids in Micrococcus luteus.
Acta Crystallogr D Biol Crystallogr. 2012 Oct;68(Pt 10):1320-8. doi: 10.1107/S0907444912028351. Epub 2012 Sep 18.
3
Impact of Branched-Chain Amino Acid Catabolism on Fatty Acid and Alkene Biosynthesis in .
Front Microbiol. 2018 Mar 12;9:374. doi: 10.3389/fmicb.2018.00374. eCollection 2018.
5
Beta-ketoacyl-acyl carrier protein synthase III (FabH) is essential for bacterial fatty acid synthesis.
J Biol Chem. 2003 Dec 19;278(51):51494-503. doi: 10.1074/jbc.M308638200. Epub 2003 Sep 30.
6
Widespread head-to-head hydrocarbon biosynthesis in bacteria and role of OleA.
Appl Environ Microbiol. 2010 Jun;76(12):3850-62. doi: 10.1128/AEM.00436-10. Epub 2010 Apr 23.
7
Enhanced production of branched-chain fatty acids by replacing β-ketoacyl-(acyl-carrier-protein) synthase III (FabH).
Biotechnol Bioeng. 2015 Aug;112(8):1613-22. doi: 10.1002/bit.25583. Epub 2015 Apr 17.

引用本文的文献

1
Directed evolution of hydrocarbon-producing enzymes.
Biotechnol Biofuels Bioprod. 2025 Aug 12;18(1):91. doi: 10.1186/s13068-025-02689-4.
2
Exploring 1-alkene biosynthesis in bacterial antagonists and Jeotgalicoccus sp. ATCC 8456.
FEMS Microbiol Lett. 2025 Jan 10;372. doi: 10.1093/femsle/fnaf004.
3
Tunnel engineering for modulating the substrate preference in cytochrome P450HI.
Bioresour Bioprocess. 2021 Apr 3;8(1):26. doi: 10.1186/s40643-021-00379-1.
4
Biosynthesis pathways of expanding carbon chains for producing advanced biofuels.
Biotechnol Biofuels Bioprod. 2023 Jul 4;16(1):109. doi: 10.1186/s13068-023-02340-0.
5
Repurposing Modular Polyketide Synthases and Non-ribosomal Peptide Synthetases for Novel Chemical Biosynthesis.
Front Mol Biosci. 2020 May 15;7:87. doi: 10.3389/fmolb.2020.00087. eCollection 2020.
6
A Novel Fungal Lipase With Methanol Tolerance and Preference for Macaw Palm Oil.
Front Bioeng Biotechnol. 2020 May 6;8:304. doi: 10.3389/fbioe.2020.00304. eCollection 2020.
7
Distribution and diversity of olefins and olefin-biosynthesis genes in Gram-positive bacteria.
Biotechnol Biofuels. 2020 Apr 15;13:70. doi: 10.1186/s13068-020-01706-y. eCollection 2020.
8
Assay Reveals Microbial OleA Thiolases Initiating Hydrocarbon and β-Lactone Biosynthesis.
mBio. 2020 Mar 10;11(2):e00111-20. doi: 10.1128/mBio.00111-20.
9
Bacterial Semiochemicals and Transkingdom Interactions with Insects and Plants.
Insects. 2019 Dec 8;10(12):441. doi: 10.3390/insects10120441.
10
Linkage of Marine Bacterial Polyunsaturated Fatty Acid and Long-Chain Hydrocarbon Biosynthesis.
Front Microbiol. 2019 Apr 3;10:702. doi: 10.3389/fmicb.2019.00702. eCollection 2019.

本文引用的文献

1
Microbial production of fatty-acid-derived fuels and chemicals from plant biomass.
Nature. 2010 Jan 28;463(7280):559-62. doi: 10.1038/nature08721.
2
Genome sequence of the Fleming strain of Micrococcus luteus, a simple free-living actinobacterium.
J Bacteriol. 2010 Feb;192(3):841-60. doi: 10.1128/JB.01254-09. Epub 2009 Nov 30.
3
C29 olefinic hydrocarbons biosynthesized by Arthrobacter species.
Appl Environ Microbiol. 2009 Mar;75(6):1774-7. doi: 10.1128/AEM.02547-08. Epub 2009 Jan 23.
4
Genomic and biochemical studies demonstrating the absence of an alkane-producing phenotype in Vibrio furnissii M1.
Appl Environ Microbiol. 2007 Nov;73(22):7192-8. doi: 10.1128/AEM.01785-07. Epub 2007 Oct 5.
6
The structural biology of type II fatty acid biosynthesis.
Annu Rev Biochem. 2005;74:791-831. doi: 10.1146/annurev.biochem.74.082803.133524.
7
Protein production by auto-induction in high density shaking cultures.
Protein Expr Purif. 2005 May;41(1):207-34. doi: 10.1016/j.pep.2005.01.016.
8
A novel method for accurate operon predictions in all sequenced prokaryotes.
Nucleic Acids Res. 2005 Feb 8;33(3):880-92. doi: 10.1093/nar/gki232. Print 2005.
9
Tools for genetic engineering in the amino acid-producing bacterium Corynebacterium glutamicum.
J Biotechnol. 2003 Sep 4;104(1-3):287-99. doi: 10.1016/s0168-1656(03)00148-2.
10
The Claisen condensation in biology.
Nat Prod Rep. 2002 Oct;19(5):581-96. doi: 10.1039/b110221b.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验