Suppr超能文献

利用机器学习研究端粒酶相关细胞衰老基因特征在乳腺癌中的预后作用。

Investigating the Prognostic Role of Telomerase-Related Cellular Senescence Gene Signatures in Breast Cancer Using Machine Learning.

作者信息

Li Qiong, Liu Hongde

机构信息

State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, China.

出版信息

Biomedicines. 2025 Mar 30;13(4):826. doi: 10.3390/biomedicines13040826.

Abstract

Telomeres and cellular senescence are critical biological processes implicated in cancer development and progression, including breast cancer, through their influence on genomic stability and modulation of the tumor microenvironment. : This study integrated bulk RNA sequencing and single-cell RNA sequencing (scRNA-seq) data to establish a gene signature associated with telomere maintenance and cellular senescence for prognostic prediction in breast cancer. Telomere-related genes (TEGs) and senescence-associated genes were curated from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. A comprehensive machine learning framework incorporating 101 algorithmic combinations across 10 survival modeling approaches, including random survival forests and ridge regression, was employed to develop a robust prognostic model. : A set of 19 key telomere- and senescence-related genes was identified as the optimal prognostic signature. The model demonstrated strong predictive accuracy and was successfully validated in multiple independent cohorts. Functional enrichment analyses indicated significant associations with immune responses and aging-related pathways. Single-cell transcriptomic analysis revealed marked cellular heterogeneity, identifying distinct subpopulations (fibroblasts and immune cells) with divergent risk scores and biological pathway activity. Additionally, pseudo-time trajectory analysis and intercellular communication mapping provided insights into the dynamic evolution of the tumor microenvironment. Immunohistochemical (IHC) validation using data from the Human Protein Atlas confirmed differential protein expression between normal and tumor tissues for several of the selected genes, reinforcing their biological relevance and clinical utility. : This study presents a novel 19-gene telomere- and senescence-associated signature with strong prognostic value in breast cancer. These findings enhance our understanding of tumor heterogeneity and may inform precision oncology approaches and future therapeutic strategies.

摘要

端粒和细胞衰老通过对基因组稳定性的影响以及肿瘤微环境的调节,是涉及癌症发生和发展(包括乳腺癌)的关键生物学过程。本研究整合了大量RNA测序和单细胞RNA测序(scRNA-seq)数据,以建立与端粒维持和细胞衰老相关的基因特征,用于乳腺癌的预后预测。从癌症基因组图谱(TCGA)和基因表达综合数据库(GEO)中筛选出端粒相关基因(TEGs)和衰老相关基因。采用一个综合的机器学习框架,该框架包含10种生存建模方法中的101种算法组合,包括随机生存森林和岭回归,来开发一个强大的预后模型。一组19个与端粒和衰老相关的关键基因被确定为最佳预后特征。该模型显示出强大的预测准确性,并在多个独立队列中成功得到验证。功能富集分析表明与免疫反应和衰老相关途径有显著关联。单细胞转录组分析揭示了明显的细胞异质性,识别出具有不同风险评分和生物途径活性的不同亚群(成纤维细胞和免疫细胞)。此外,伪时间轨迹分析和细胞间通讯图谱为肿瘤微环境的动态演变提供了见解。使用人类蛋白质图谱的数据进行免疫组织化学(IHC)验证,证实了所选几个基因在正常组织和肿瘤组织之间的差异蛋白表达,加强了它们的生物学相关性和临床实用性。本研究提出了一种在乳腺癌中具有强大预后价值的新型19基因端粒和衰老相关特征。这些发现加深了我们对肿瘤异质性的理解,并可能为精准肿瘤学方法和未来治疗策略提供依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b90/12024799/7956ef23e03e/biomedicines-13-00826-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验