Public Health Agency of Canada, Ontario, Canada.
Math Biosci. 2010 Mar;224(1):43-52. doi: 10.1016/j.mbs.2009.12.007. Epub 2010 Jan 4.
We use distribution theory and ordering of non-negative random variables to study the Susceptible-Exposed-Infectious-Removed (SEIR) model with two control measures, quarantine and isolation, to reduce the spread of an infectious disease. We identify that the probability distributions of the latent period and the infectious period are primary features of the SEIR model to formulate the epidemic threshold and to evaluate the effectiveness of the intervention measures. If the primary features are changed, the conclusions will be altered in an importantly different way. For the latent and infectious periods with known mean values, it is the dilation, a generalization of variance, of their distributions that ranks the effectiveness of these control measures. We further propose ways to set quarantine and isolation targets to reduce the controlled reproduction number below the threshold using observed initial growth rate from outbreak data. If both quarantine and isolation are 100% effective, one can directly use the observed growth rate for setting control targets. If they are not 100% effective, some further knowledge of the distributions is required.
我们使用分布理论和非负随机变量的排序来研究具有两种控制措施(检疫和隔离)的易感染-暴露-感染-移除(SEIR)模型,以减少传染病的传播。我们确定潜伏期和传染期的概率分布是 SEIR 模型的主要特征,用于制定传染病阈值并评估干预措施的有效性。如果主要特征发生变化,结论将以重要的不同方式改变。对于具有已知平均值的潜伏期和传染期,它们的分布的扩张(方差的推广)是对这些控制措施的有效性进行排序的指标。我们进一步提出了使用从爆发数据中观察到的初始增长率来设置检疫和隔离目标的方法,以将受控繁殖数降低到阈值以下。如果检疫和隔离的有效性均为 100%,则可以直接使用观察到的增长率来设置控制目标。如果它们的有效性不是 100%,则需要进一步了解分布情况。