Yuan Yuan, Bélair Jacques
Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada,
J Math Biol. 2014 Oct;69(4):875-904. doi: 10.1007/s00285-013-0720-4. Epub 2013 Aug 29.
A disease transmission model of SEIRS type with distributed delays in latent and temporary immune periods is discussed. With general/particular probability distributions in both of these periods, we address the threshold property of the basic reproduction number R0 and the dynamical properties of the disease-free/endemic equilibrium points present in the model. More specifically, we 1. show the dependence of R0 on the probability distribution in the latent period and the independence of R0 from the distribution of the temporary immunity, 2. prove that the disease free equilibrium is always globally asymptotically stable when R0, and 3. according to the choice of probability functions in the latent and temporary immune periods, establish that the disease always persists when R0 < 1 and an endemic equilibrium exists with different stability properties. In particular, the endemic steady state is at least locally asymptotically stable if the probability distribution in the temporary immunity is a decreasing exponential function when the duration of the latency stage is fixed or exponentially decreasing. It may become oscillatory under certain conditions when there exists a constant delay in the temporary immunity period. Numerical simulations are given to verify the theoretical predictions.
讨论了一个在潜伏期和暂时免疫期具有分布时滞的SEIRS型疾病传播模型。对于这两个时期的一般/特定概率分布,我们研究了基本再生数(R_0)的阈值性质以及模型中无病/地方病平衡点的动力学性质。更具体地说,我们:1. 展示了(R_0)对潜伏期概率分布的依赖性以及(R_0)与暂时免疫分布的独立性;2. 证明了当(R_0\lt1)时无病平衡点总是全局渐近稳定的;3. 根据潜伏期和暂时免疫期概率函数的选择,确定当(R_0\gt1)时疾病总是持续存在且存在具有不同稳定性性质的地方病平衡点。特别地,当潜伏期持续时间固定或呈指数下降时,如果暂时免疫中的概率分布是递减指数函数,地方病稳态至少是局部渐近稳定的。当暂时免疫期存在恒定延迟时,在某些条件下它可能会变得振荡。给出了数值模拟以验证理论预测。