Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States of America.
Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States of America; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.
J Mol Cell Cardiol. 2022 Apr;165:9-18. doi: 10.1016/j.yjmcc.2021.12.005. Epub 2021 Dec 23.
ATP synthase (FF) is a rotary molecular engine that harnesses energy from electrochemical-gradients across the inner mitochondrial membrane for ATP synthesis. Despite the accepted tenet that FF transports exclusively H, our laboratory has demonstrated that, in addition to H, FF ATP synthase transports a significant fraction of ΔΨ-driven charge as K to synthesize ATP. Herein, we utilize a computational modeling approach as a proof of principle of the feasibility of the core mechanism underlying the enhanced ATP synthesis, and to explore its bioenergetic consequences. A minimal model comprising the 'core' mechanism constituted by ATP synthase, driven by both proton (PMF) and potassium motive force (KMF), respiratory chain, adenine nucleotide translocator, Pi carrier, and K/H exchanger (KHEmito) was able to simulate enhanced ATP synthesis and respiratory fluxes determined experimentally with isolated heart mitochondria. This capacity of FF ATP synthase confers mitochondria with a significant energetic advantage compared to K transport through a channel not linked to oxidative phosphorylation (OxPhos). The K-cycling mechanism requires a KHE that exchanges matrix K for intermembrane space H, leaving PMF as the overall driving energy of OxPhos, in full agreement with the standard chemiosmotic mechanism. Experimental data of state 4➔3 energetic transitions, mimicking low to high energy demand, could be reproduced by an integrated computational model of mitochondrial function that incorporates the 'core' mechanism. Model simulations display similar behavior compared to the experimentally observed changes in ΔΨ, mitochondrial K uptake, matrix volume, respiration, and ATP synthesis during the energetic transitions at physiological pH and K concentration. The model also explores the role played by KHE in modulating the energetic performance of mitochondria. The results obtained support the available experimental evidence on ATP synthesis driven by K and H transport through the FF ATP synthase.
ATP 合酶(FF)是一种旋转分子引擎,它利用跨线粒体内膜的电化学梯度的能量来合成 ATP。尽管公认的观点是 FF 仅运输 H,但我们的实验室已经证明,除了 H 之外,FF ATP 合酶还可以运输相当一部分的 ΔΨ 驱动电荷作为 K 来合成 ATP。在此,我们利用计算建模方法作为证明该核心机制的可行性的原理,以探索其生物能量学后果。一个由 ATP 合酶组成的最小模型,由质子(PMF)和钾动力势(KMF)驱动,呼吸链、腺嘌呤核苷酸转运蛋白、Pi 载体和 K/H 交换器(KHEmito)组成,能够模拟与分离的心脏线粒体实验确定的增强的 ATP 合成和呼吸通量。与不与氧化磷酸化(OxPhos)相关的通道相比,FF ATP 合酶的这种 K 转运能力赋予线粒体显著的能量优势。K 循环机制需要一个 KHE,它将基质中的 K 交换为跨膜空间中的 H,将 PMF 作为 OxPhos 的总体驱动力,这与标准的化学渗透机制完全一致。通过整合包含“核心”机制的线粒体功能的计算模型,可以再现模拟低到高能量需求的状态 4➔3 能量转换的实验数据。与在生理 pH 值和 K 浓度下进行的能量转换过程中观察到的 ΔΨ、线粒体 K 摄取、基质体积、呼吸和 ATP 合成的变化相比,模型模拟显示出相似的行为。该模型还探讨了 KHE 在调节线粒体能量性能方面的作用。所获得的结果支持了关于由 FF ATP 合酶驱动的 K 和 H 运输的 ATP 合成的现有实验证据。