Suppr超能文献

多分类逻辑回归估计马尔可夫链模型在原发性失眠患者睡眠结构建模中的应用。

Multinomial logistic estimation of Markov-chain models for modeling sleep architecture in primary insomnia patients.

机构信息

Department of Information Engineering, University of Padova, Via Gradenigo 6/B, 35131, Padova, Italy.

出版信息

J Pharmacokinet Pharmacodyn. 2010 Apr;37(2):137-55. doi: 10.1007/s10928-009-9148-2. Epub 2010 Jan 6.

Abstract

Hypnotic drug development calls for a better understanding of sleep physiology in order to improve and differentiate novel medicines for the treatment of sleep disorders. On this basis, a proper evaluation of polysomnographic data collected in clinical trials conducted to explore clinical efficacy of novel hypnotic compounds should include the assessment of sleep architecture and its drug-induced changes. This work presents a non-linear mixed-effect Markov-chain model based on multinomial logistic functions which characterize the time course of transition probabilities between sleep stages in insomniac patients treated with placebo. Polysomnography measurements were obtained from patients during one night treatment. A population approach was used to describe the time course of sleep stages (awake stage, stage 1, stage 2, slow-wave sleep and REM sleep) using a Markov-chain model. The relationship between time and individual transition probabilities between sleep stages was modelled through piecewise linear multinomial logistic functions. The identification of the model produced a good adherence of mean post-hoc estimates to the observed transition frequencies. Parameters were generally well estimated in terms of CV, shrinkage and distribution of empirical Bayes estimates around the typical values. The posterior predictive check analysis showed good consistency between model-predicted and observed sleep parameters. In conclusion, the Markov-chain model based on multinomial logistic functions provided an accurate description of the time course of sleep stages together with an assessment of the probabilities of transition between different stages.

摘要

催眠药物的开发需要更好地了解睡眠生理学,以便改进和区分治疗睡眠障碍的新型药物。在此基础上,对为探索新型催眠化合物的临床疗效而在临床试验中收集的多导睡眠图数据进行适当评估,应包括评估睡眠结构及其药物诱导的变化。本工作提出了一种基于多项逻辑函数的非线性混合效应马尔可夫链模型,用于描述用安慰剂治疗的失眠症患者睡眠阶段之间的转移概率的时间过程。多导睡眠图测量是在患者接受一夜治疗期间获得的。采用群体方法描述使用马尔可夫链模型的睡眠阶段(清醒期、第 1 期、第 2 期、慢波睡眠和 REM 睡眠)的时间过程。通过分段线性多项逻辑函数对时间与个体之间的睡眠阶段转移概率之间的关系进行建模。模型的识别产生了平均事后估计值与观察到的转移频率之间的良好一致性。就 CV、收缩和经验贝叶斯估计值围绕典型值的分布而言,参数通常得到了很好的估计。后验预测检查分析表明,模型预测和观察到的睡眠参数之间具有良好的一致性。总之,基于多项逻辑函数的马尔可夫链模型提供了对睡眠阶段时间过程的准确描述,以及对不同阶段之间转移概率的评估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验