Instituto de Optica, CSIC, Serrano 121, 28006 Madrid, Spain.
ACS Nano. 2010 Feb 23;4(2):709-16. doi: 10.1021/nn901144d.
We introduce a numerical technique to investigate the temperature distribution in arbitrarily complex plasmonic systems subject to external illumination. We perform both electromagnetic and thermodynamic calculations based upon a time-efficient boundary element method. Two kinds of plasmonic systems are investigated in order to illustrate the potential of such a technique. First, we focus on individual particles with various morphologies. In analogy with electrostatics, we introduce the concept of thermal capacitance. This geometry-dependent quantity allows us to assess the temperature increase inside a plasmonic particle from the sole knowledge of its absorption cross section. We present universal thermal-capacitance curves for ellipsoids, rods, disks, and rings. Additionally, we investigate assemblies of nanoparticles in close proximity and show that, despite its diffusive nature, the temperature distribution can be made highly non-uniform even at the nanoscale using plasmonic systems. A significant degree of nanoscale control over the individual temperatures of neighboring particles is demonstrated, depending on the external light wavelength and direction of incidence. We illustrate this concept with simulations of gold sphere dimers and chains in water. Our work opens new possibilities for selectively controlling processes such as local melting for dynamic patterning of textured materials, chemical and metabolic thermal activation, and heat delivery for producing mechanical motion with spatial precision in the nanoscale.
我们引入了一种数值技术来研究在外部照明下任意复杂的等离子体系统中的温度分布。我们基于一种高效的边界元法进行电磁和热力学计算。为了说明这种技术的潜力,我们研究了两种等离子体系统。首先,我们专注于具有各种形态的单个粒子。与静电学类似,我们引入了热电容的概念。这种与几何形状相关的量允许我们仅从等离子体粒子的吸收截面来评估其内部的温升。我们提出了用于椭球、棒、盘和环的通用热电容曲线。此外,我们还研究了近距离排列的纳米粒子组装体,并表明,尽管其具有扩散性质,但仍可以使用等离子体系统在纳米尺度上使温度分布变得高度不均匀。通过模拟水中的金球体二聚体和链,我们证明了可以根据外部光波长和入射方向对相邻粒子的个体温度进行显著的纳米级控制。我们的工作为选择性控制局部熔化等过程开辟了新的可能性,这些过程可用于动态图案化纹理材料、化学和代谢热激活,以及在纳米尺度上产生具有空间精度的机械运动的热传递。