Suppr超能文献

活体光学成像的运动门控采集。

Motion-gated acquisition for in vivo optical imaging.

机构信息

Boston University, 48 Cummington Street, Boston, Massachusetts 02215, USA.

出版信息

J Biomed Opt. 2009 Nov-Dec;14(6):064038. doi: 10.1117/1.3275473.

Abstract

Wide-field continuous wave fluorescence imaging, fluorescence lifetime imaging, frequency domain photon migration, and spatially modulated imaging have the potential to provide quantitative measurements in vivo. However, most of these techniques have not yet been successfully translated to the clinic due to challenging environmental constraints. In many circumstances, cardiac and respiratory motion greatly impair image quality and/or quantitative processing. To address this fundamental problem, we have developed a low-cost, field-programmable gate array-based, hardware-only gating device that delivers a phase-locked acquisition window of arbitrary delay and width that is derived from an unlimited number of pseudo-periodic and nonperiodic input signals. All device features can be controlled manually or via USB serial commands. The working range of the device spans the extremes of mouse electrocardiogram (1000 beats per minute) to human respiration (4 breaths per minute), with timing resolution <or=0.06%, and jitter <or=0.008%, of the input signal period. We demonstrate the performance of the gating device, including dramatic improvements in quantitative measurements, in vitro using a motion simulator and in vivo using near-infrared fluorescence angiography of beating pig heart. This gating device should help to enable the clinical translation of promising new optical imaging technologies.

摘要

宽场连续波荧光成像、荧光寿命成像、频域光迁移和空间调制成像有可能提供体内的定量测量。然而,由于环境约束的挑战,这些技术中的大多数尚未成功转化为临床应用。在许多情况下,心脏和呼吸运动极大地影响了图像质量和/或定量处理。为了解决这个基本问题,我们开发了一种低成本、基于现场可编程门阵列的、仅硬件的门控设备,它提供了一个任意延迟和宽度的锁相信号采集窗口,该窗口是由无限数量的伪周期性和非周期性输入信号衍生而来的。所有设备特性都可以手动或通过 USB 串行命令进行控制。该设备的工作范围跨越了从老鼠心电图(每分钟 1000 次跳动)到人类呼吸(每分钟 4 次呼吸)的极端范围,定时分辨率<或=输入信号周期的 0.06%,抖动<或=0.008%。我们展示了门控设备的性能,包括在体外使用运动模拟器和在体内使用跳动猪心的近红外荧光血管造影进行的定量测量的显著改善。这种门控设备应该有助于实现有前途的新型光学成像技术的临床转化。

相似文献

1
Motion-gated acquisition for in vivo optical imaging.
J Biomed Opt. 2009 Nov-Dec;14(6):064038. doi: 10.1117/1.3275473.
2
Cardiac C-arm CT: a unified framework for motion estimation and dynamic CT.
IEEE Trans Med Imaging. 2009 Nov;28(11):1836-49. doi: 10.1109/TMI.2009.2025499.
3
An optical fiber-based gating device for prospective mouse cardiac MRI.
IEEE Trans Biomed Eng. 2014 Jan;61(1):162-70. doi: 10.1109/TBME.2013.2278712. Epub 2013 Sep 5.
5
An automated approach to fully self-gated free-running cardiac and respiratory motion-resolved 5D whole-heart MRI.
Magn Reson Med. 2019 Dec;82(6):2118-2132. doi: 10.1002/mrm.27898. Epub 2019 Jul 18.
6
A novel dual gating approach using joint inertial sensors: implications for cardiac PET imaging.
Phys Med Biol. 2017 Oct 4;62(20):8080-8101. doi: 10.1088/1361-6560/aa8b09.
7
First-in-human pilot study of a spatial frequency domain oxygenation imaging system.
J Biomed Opt. 2011 Aug;16(8):086015. doi: 10.1117/1.3614566.
8
Cardiac motion and spillover correction for quantitative PET imaging using dynamic MRI.
Med Phys. 2019 Feb;46(2):726-737. doi: 10.1002/mp.13345. Epub 2019 Jan 15.
9
Segmented radial cardiac MRI during arrhythmia using retrospective electrocardiogram and respiratory gating.
Magn Reson Med. 2019 Mar;81(3):1726-1738. doi: 10.1002/mrm.27533. Epub 2018 Oct 26.
10
Nanoparticles for In Vivo Lifetime Multiplexed Imaging.
Methods Mol Biol. 2021;2350:239-251. doi: 10.1007/978-1-0716-1593-5_15.

引用本文的文献

2
Optical spectroscopic imaging for cell therapy and tissue engineering.
Appl Spectrosc Rev. 2018;53(2-4):360-375. doi: 10.1080/05704928.2017.1328428. Epub 2017 Jun 8.
3
Optimization of fluorescent imaging in the operating room through pulsed acquisition and gating to ambient background cycling.
Biomed Opt Express. 2017 Apr 26;8(5):2635-2648. doi: 10.1364/BOE.8.002635. eCollection 2017 May 1.
4
Autofluorescence hyperspectral imaging of radiofrequency ablation lesions in porcine cardiac tissue.
J Biophotonics. 2017 Aug;10(8):1008-1017. doi: 10.1002/jbio.201600071. Epub 2016 Aug 22.
5
Advanced Motion Compensation Methods for Intravital Optical Microscopy.
IEEE J Sel Top Quantum Electron. 2014 Mar;20(2). doi: 10.1109/JSTQE.2013.2279314.
6
Motion compensation using a suctioning stabilizer for intravital microscopy.
Intravital. 2012 Oct 1;1(2):115-121. doi: 10.4161/intv.23017.
7
Improved intravital microscopy via synchronization of respiration and holder stabilization.
J Biomed Opt. 2012 Sep;17(9):96018-1. doi: 10.1117/1.JBO.17.9.096018.

本文引用的文献

2
Fluorescence lifetime imaging in turbid media.
Opt Lett. 1996 Jan 15;21(2):158-60. doi: 10.1364/ol.21.000158.
5
Three-dimensional surface profile intensity correction for spatially modulated imaging.
J Biomed Opt. 2009 May-Jun;14(3):034045. doi: 10.1117/1.3156840.
6
High temporal resolution OCT using image-based retrospective gating.
Opt Express. 2009 Jun 22;17(13):10786-99. doi: 10.1364/oe.17.010786.
7
Quantitation and mapping of tissue optical properties using modulated imaging.
J Biomed Opt. 2009 Mar-Apr;14(2):024012. doi: 10.1117/1.3088140.
8
Sentinel lymph node detection in skin cancer patients using real-time fluorescence navigation with indocyanine green: preliminary experience.
J Plast Reconstr Aesthet Surg. 2009 Oct;62(10):e373-8. doi: 10.1016/j.bjps.2007.12.074. Epub 2008 Jun 16.
9
Detection of sentinel node in gastric cancer surgery by indocyanine green fluorescence imaging: comparison with infrared imaging.
Ann Surg Oncol. 2008 Jun;15(6):1640-3. doi: 10.1245/s10434-008-9872-7. Epub 2008 Apr 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验