Suppr超能文献

通过呼吸同步和 holder 稳定化提高活体显微镜检查的效果。

Improved intravital microscopy via synchronization of respiration and holder stabilization.

机构信息

Massachusetts General Hospital and Harvard Medical School, Center for System Biology, Richard B. Simches Research Center, 185 Cambridge Street, Boston, Massachusetts 02114, USA.

出版信息

J Biomed Opt. 2012 Sep;17(9):96018-1. doi: 10.1117/1.JBO.17.9.096018.

Abstract

A major challenge in high-resolution intravital confocal and multiphoton microscopy is physiologic tissue movement during image acquisition. Of the various physiological sources of movement, respiration has arguably the largest and most wide-ranging effect. We describe a technique for achieving stabilized microscopy imaging using a dual strategy. First, we designed a mechanical stabilizer for constraining physical motion; this served to simultaneously increase the in-focus range over which data can be acquired as well as increase the reproducibility of imaging a certain position within each confocal imaging plane. Second, by implementing a retrospective breathing-gated imaging modality, we performed selective image extraction gated to a particular phase of the respiratory cycle. Thanks to the high reproducibility in position, all gated images presented a high degree of correlation over time. The images obtained using this technique not only showed significant improvements over images acquired without the stabilizer, but also demonstrated accurate in vivo imaging during longitudinal studies. The described methodology is easy to implement with any commercial imaging system, as are used by most biological imaging laboratories, and can be used for both confocal and multiphoton laser scanning microscopy.

摘要

在高分辨率共聚焦和多光子显微镜术中,一个主要的挑战是在图像获取过程中生理组织的运动。在各种生理运动源中,呼吸运动的影响可以说是最大和最广泛的。我们描述了一种使用双重策略实现稳定显微镜成像的技术。首先,我们设计了一种机械稳定器来约束物理运动;这不仅增加了可以获取数据的焦点范围内,还提高了在每个共聚焦成像平面内对某个位置成像的可重复性。其次,通过实现回溯式呼吸门控成像模式,我们执行了选择性的图像提取,仅在呼吸周期的特定相位进行。由于位置的高度重现性,所有门控图像在时间上都表现出高度相关性。与没有稳定器获取的图像相比,使用该技术获得的图像有显著改善,而且在纵向研究中也能进行准确的活体成像。所描述的方法易于与大多数生物成像实验室使用的任何商业成像系统一起实现,可用于共聚焦和多光子激光扫描显微镜。

相似文献

1
Improved intravital microscopy via synchronization of respiration and holder stabilization.
J Biomed Opt. 2012 Sep;17(9):96018-1. doi: 10.1117/1.JBO.17.9.096018.
2
Pinhole shifting lifetime imaging microscopy.
J Biomed Opt. 2008 Nov-Dec;13(6):064001. doi: 10.1117/1.3027503.
3
Single-wavelength reflected confocal and multiphoton microscopy for tissue imaging.
J Biomed Opt. 2009 Sep-Oct;14(5):054026. doi: 10.1117/1.3247157.
4
Dual-detection confocal fluorescence microscopy: fluorescence axial imaging without axial scanning.
Opt Express. 2013 Jul 29;21(15):17839-48. doi: 10.1364/OE.21.017839.
5
Laser spectral characterization in multiphoton microscopy.
Appl Opt. 2004 May 20;43(15):3055-60. doi: 10.1364/ao.43.003055.
6
Mosaic acquisition and processing for optical-resolution photoacoustic microscopy.
J Biomed Opt. 2012 Aug;17(8):080503-1. doi: 10.1117/1.JBO.17.8.080503.
8
Signal improvement in multiphoton microscopy by reflection with simple mirrors near the sample.
J Biomed Opt. 2010 Mar-Apr;15(2):026017. doi: 10.1117/1.3374337.
9
Scattering suppression and confocal detection in multifocal multiphoton microscopy.
J Biomed Opt. 2007 May-Jun;12(3):034010. doi: 10.1117/1.2736425.
10
Fast three-dimensional laser scanning scheme using acousto-optic deflectors.
J Biomed Opt. 2005 Nov-Dec;10(6):064038. doi: 10.1117/1.2141504.

引用本文的文献

1
Understanding the in vivo Fate of Advanced Materials by Imaging.
Adv Funct Mater. 2020 Sep 10;30(37). doi: 10.1002/adfm.201910369. Epub 2020 Apr 6.
2
High dynamic range fluorescence imaging.
IEEE J Sel Top Quantum Electron. 2019 Jan-Feb;25(1). doi: 10.1109/JSTQE.2018.2881608. Epub 2018 Nov 19.
3
Tify: A quality-based frame selection tool for improving the output of unstable biomedical imaging.
PLoS One. 2019 Mar 11;14(3):e0213162. doi: 10.1371/journal.pone.0213162. eCollection 2019.
4
Fluorescence anisotropy imaging in drug discovery.
Adv Drug Deliv Rev. 2019 Nov-Dec;151-152:262-288. doi: 10.1016/j.addr.2018.01.019. Epub 2018 Feb 2.
5
Motion characterization scheme to minimize motion artifacts in intravital microscopy.
J Biomed Opt. 2017 Mar 1;22(3):36005. doi: 10.1117/1.JBO.22.3.036005.
6
Imaging windows for long-term intravital imaging: General overview and technical insights.
Intravital. 2014 Aug 11;3(2):e29917. doi: 10.4161/intv.29917. eCollection 2014.
7
Live cell imaging to understand monocyte, macrophage, and dendritic cell function in atherosclerosis.
J Exp Med. 2016 Jun 27;213(7):1117-31. doi: 10.1084/jem.20151885. Epub 2016 Jun 6.
8
Imaging the pharmacology of nanomaterials by intravital microscopy: Toward understanding their biological behavior.
Adv Drug Deliv Rev. 2017 Apr;113:61-86. doi: 10.1016/j.addr.2016.05.023. Epub 2016 Jun 4.
9
Imaging the beating heart in the mouse using intravital microscopy techniques.
Nat Protoc. 2015 Nov;10(11):1802-19. doi: 10.1038/nprot.2015.119. Epub 2015 Oct 22.
10
New techniques for motion-artifact-free in vivo cardiac microscopy.
Front Physiol. 2015 May 12;6:147. doi: 10.3389/fphys.2015.00147. eCollection 2015.

本文引用的文献

1
Adaptive movement compensation for in vivo imaging of fast cellular dynamics within a moving tissue.
PLoS One. 2011;6(5):e19928. doi: 10.1371/journal.pone.0019928. Epub 2011 May 24.
2
Stabilized imaging of immune surveillance in the mouse lung.
Nat Methods. 2011 Jan;8(1):91-6. doi: 10.1038/nmeth.1543. Epub 2010 Dec 12.
4
Motion-gated acquisition for in vivo optical imaging.
J Biomed Opt. 2009 Nov-Dec;14(6):064038. doi: 10.1117/1.3275473.
5
Population imaging of ongoing neuronal activity in the visual cortex of awake rats.
Nat Neurosci. 2008 Jul;11(7):749-51. doi: 10.1038/nn.2140. Epub 2008 Jun 15.
6
Microscopic imaging techniques for drug discovery.
Nat Rev Drug Discov. 2008 Jan;7(1):54-67. doi: 10.1038/nrd2446.
7
Imaging large-scale neural activity with cellular resolution in awake, mobile mice.
Neuron. 2007 Oct 4;56(1):43-57. doi: 10.1016/j.neuron.2007.08.003.
8
Multi-photon excitation microscopy in intact animals.
J Microsc. 2006 Apr;222(Pt 1):58-64. doi: 10.1111/j.1365-2818.2006.01570.x.
10
Systematic review of beating heart surgery with the Octopus Tissue Stabilizer.
Eur J Cardiothorac Surg. 2002 May;21(5):804-17. doi: 10.1016/s1010-7940(02)00075-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验