Institute for Computer Graphics and Vision, Graz University of Technology, Inffeldgasse 16, A-8010 Graz, Austria.
Med Image Anal. 2010 Apr;14(2):172-84. doi: 10.1016/j.media.2009.11.003. Epub 2009 Nov 22.
The segmentation of tubular tree structures like vessel systems in volumetric datasets is of vital interest for many medical applications. We present a novel approach that allows to simultaneously separate and segment multiple interwoven tubular tree structures. The algorithm consists of two main processing steps. First, the tree structures are identified and corresponding shape priors are generated by using a bottom-up identification of tubular objects combined with a top-down grouping of these objects into complete tree structures. The grouping step allows us to separate interwoven trees and to handle local disturbances. Second, the generated shape priors are utilized for the intrinsic segmentation of the different tubular systems to avoid leakage or undersegmentation in locally disturbed regions. We have evaluated our method on phantom and different clinical CT datasets and demonstrated its ability to correctly obtain/separate different tree structures, accurately determine the surface of tubular tree structures, and robustly handle noise, disturbances (e.g., tumors), and deviations from cylindrical tube shapes like for example aneurysms.
管状树结构的分割,如容积数据集内的血管系统,对许多医学应用都至关重要。我们提出了一种新颖的方法,可以同时分离和分割多个交织的管状树结构。该算法由两个主要处理步骤组成。首先,通过使用自底向上的管状物体识别方法和自上而下的这些物体的分组成完整的树结构,来识别树结构并生成相应的形状先验。分组步骤允许我们分离交织的树,并处理局部干扰。其次,利用生成的形状先验对不同管状系统进行内在分割,以避免在局部干扰区域发生泄漏或欠分割。我们已经在体模和不同的临床 CT 数据集上评估了我们的方法,并证明了它能够正确获取/分离不同的树结构、准确确定管状树结构的表面、以及稳健地处理噪声、干扰(例如肿瘤)和偏离圆柱管形状,例如动脉瘤。