Academy for Engineering & Technology, Fudan University, Shanghai 200000, China.
Liver Surgery Department, Zhongshan Hospital, Fudan University, Shanghai 200000, China.
Comput Intell Neurosci. 2022 Sep 23;2022:2303733. doi: 10.1155/2022/2303733. eCollection 2022.
Preoperative observation of liver status in patients with liver tumors by abdominal Computed Tomography (CT) imaging is one of the essential references for formulating surgical plans. Preoperative vessel segmentation in the patient's liver region has become an increasingly important and challenging problem. Almost all existing methods first segment arterial and venous vessels on CT in the arterial and venous phases, respectively. Then, the two are directly registered to complete the reconstruction of the vascular system, ignoring the displacement and deformation of blood vessels caused by changes in body position and respiration in the two phases. We propose an unsupervised domain-adaptive two-stage vessel segmentation framework for simultaneous fine segmentation of arterial and venous vessels on venous phase CT. Specifically, we first achieve domain adaptation for arterial and venous phase CT using a modified cycle-consistent adversarial network. The newly added discriminator can improve the ability to generate and discriminate tiny blood vessels, making the domain-adaptive network more robust. The second-stage supervised training of arterial vessels was then performed on the translated arterial phase CT. In this process, we propose an orthogonal depth projection loss function to enhance the representation ability of the 3D U-shape segmentation network for the geometric information of the vessel model. The segmented venous vessels were also performed on venous phase CT in the second stage. Finally, we invited professional doctors to annotate arterial and venous vessels on the venous phase CT of the test set. The experimental results show that the segmentation accuracy of arterial and venous vessels on venous phase CT is 0.8454 and 0.8087, respectively. Our proposed framework can simultaneously achieve supervised segmentation of venous vessels and unsupervised segmentation of arterial vessels on venous phase CT. Our approach can be extended to other fields of medical segmentation, such as unsupervised domain adaptive segmentation of liver tumors at different CT phases, to facilitate the development of the community.
术前通过腹部计算机断层扫描(CT)成像观察肿瘤患者的肝脏状态是制定手术计划的重要参考之一。患者肝脏区域的血管分割已成为一个日益重要和具有挑战性的问题。几乎所有现有的方法首先分别在动脉期和静脉期对 CT 中的动脉和静脉血管进行分割。然后,直接对这两个血管进行配准,以完成血管系统的重建,而忽略了在这两个相位中由于体位变化和呼吸引起的血管的位移和变形。我们提出了一种无监督的域自适应两阶段血管分割框架,用于对静脉期 CT 上的动脉和静脉血管进行精细分割。具体来说,我们首先使用修改后的循环一致性对抗网络对动脉期和静脉期 CT 进行域自适应。新添加的鉴别器可以提高生成和区分微小血管的能力,使域自适应网络更加健壮。然后在翻译后的动脉期 CT 上对动脉血管进行第二阶段的有监督训练。在此过程中,我们提出了一种正交深度投影损失函数,以增强 3D U 形分割网络对血管模型几何信息的表示能力。在第二阶段也在静脉期 CT 上对分割的静脉血管进行了处理。最后,我们邀请专业医生对测试集的静脉期 CT 上的动脉和静脉血管进行注释。实验结果表明,静脉期 CT 上的动脉和静脉血管的分割精度分别为 0.8454 和 0.8087。我们提出的框架可以同时对静脉期 CT 上的静脉血管进行有监督分割和对动脉血管进行无监督分割。我们的方法可以扩展到其他医学分割领域,例如在不同 CT 相位上对肝脏肿瘤进行无监督的域自适应分割,以促进社区的发展。