Centro de Micro-Análisis de Materiales, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
Anal Bioanal Chem. 2010 Apr;396(8):2725-40. doi: 10.1007/s00216-009-3339-y. Epub 2010 Jan 9.
An increasing amount of effort is currently being directed towards the development of new functionalized nanostructured materials (i.e., multilayers and nanocomposites). Using an appropriate combination of composition and microstructure, it is possible to optimize and tailor the final properties of the material to its final application. The analytical characterization of these new complex nanostructures requires high-resolution analytical techniques that are able to provide information about surface and depth composition at the nanometric level. In this work, we comparatively review the state of the art in four different depth-profiling characterization techniques: Rutherford backscattering spectroscopy (RBS), secondary ion mass spectrometry (SIMS), X-ray photoelectron spectroscopy (XPS) and glow discharge optical emission spectroscopy (GDOES). In addition, we predict future trends in these techniques regarding improvements in their depth resolutions. Subnanometric resolution can now be achieved in RBS using magnetic spectrometry systems. In SIMS, the use of rotating sample holders and oxygen flooding during analysis as well as the optimization of floating low-energy ion guns to lower the impact energy of the primary ions improves the depth resolution of the technique. Angle-resolved XPS provides a very powerful and nondestructive technique for obtaining depth profiling and chemical information within the range of a few monolayers. Finally, the application of mathematical tools (deconvolution algorithms and a depth-profiling model), pulsed sources and surface plasma cleaning procedures is expected to greatly improve GDOES depth resolution.
目前,人们正在投入越来越多的精力来开发新型功能化纳米结构材料(即多层膜和纳米复合材料)。通过适当组合成分和微观结构,可以优化和定制材料的最终性能,以满足其最终应用的需求。这些新型复杂纳米结构的分析特性需要高分辨率分析技术,这些技术能够提供纳米级表面和深度成分的信息。在这项工作中,我们比较性地回顾了四种不同深度剖析特性技术的最新技术状况:卢瑟福背散射光谱(RBS)、二次离子质谱(SIMS)、X 射线光电子能谱(XPS)和辉光放电发射光谱(GDOES)。此外,我们还预测了这些技术在深度分辨率方面的未来发展趋势。现在,使用磁场谱系统可以在 RBS 中实现亚纳米分辨率。在 SIMS 中,旋转样品架的使用以及分析过程中的氧气冲刷,以及优化浮置低能离子枪以降低初级离子的撞击能量,都提高了该技术的深度分辨率。角分辨 XPS 是一种非常强大和非破坏性的技术,可在几个单层的范围内获得深度剖析和化学信息。最后,预计数学工具(解卷积算法和深度剖析模型)、脉冲源和表面等离子体清洁程序的应用将极大地提高 GDOES 的深度分辨率。