Blezek Daniel J, Miller James V
GE Research, 1 Research Circle, Niskayuna, NY 12309, USA.
Med Image Anal. 2007 Oct;11(5):443-57. doi: 10.1016/j.media.2007.07.001. Epub 2007 Jul 25.
The process of constructing an atlas typically involves selecting one individual from a sample on which to base or root the atlas. If the individual selected is far from the population mean, then the resulting atlas is biased towards this individual. This, in turn, may bias any inferences made with the atlas. Unbiased atlas construction addresses this issue by either basing the atlas on the individual which is the median of the sample or by an iterative technique whereby the atlas converges to the unknown population mean. In this paper, we explore the question of whether a single atlas is appropriate for a given sample or whether there is sufficient image based evidence from which we can infer multiple atlases, each constructed from a subset of the data. We refer to this process as atlas stratification. Essentially, we determine whether the sample, and hence the population, is multi-modal and is best represented by an atlas per mode. In this preliminary work, we use the mean shift algorithm to identify the modes of the sample and multidimensional scaling to visualize the clustering process on clinical MRI neurological image datasets.
构建图谱的过程通常涉及从样本中选择一个个体作为图谱的基础或根源。如果所选个体远离总体均值,那么生成的图谱就会偏向于这个个体。反过来,这可能会使基于该图谱做出的任何推断产生偏差。无偏图谱构建通过以下两种方式解决这个问题:一是将图谱基于样本中位数的个体,二是采用一种迭代技术,使图谱收敛到未知的总体均值。在本文中,我们探讨了对于给定样本,单个图谱是否合适,或者是否有足够的基于图像的证据来推断多个图谱,每个图谱由数据的一个子集构建而成。我们将这个过程称为图谱分层。本质上,我们要确定样本以及总体是否是多模态的,以及每个模态是否最好由一个图谱来表示。在这项初步工作中,我们使用均值漂移算法来识别样本的模态,并使用多维缩放来可视化临床MRI神经图像数据集上的聚类过程。