Suppr超能文献

富含亮氨酸重复激酶 2 调节帕金森病相关突变型 α-突触核蛋白诱导的神经病理学进展。

Leucine-rich repeat kinase 2 regulates the progression of neuropathology induced by Parkinson's-disease-related mutant alpha-synuclein.

机构信息

Unit of Transgenesis, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA.

出版信息

Neuron. 2009 Dec 24;64(6):807-27. doi: 10.1016/j.neuron.2009.11.006.

Abstract

Mutations in alpha-synuclein and Leucine-rich repeat kinase 2 (LRRK2) are linked to autosomal dominant forms of Parkinson's disease (PD). However, little is known about any potential pathophysiological interplay between these two PD-related genes. Here we show in transgenic mice that although overexpression of LRRK2 alone did not cause neurodegeneration, the presence of excess LRRK2 greatly accelerated the progression of neuropathological abnormalities developed in PD-related A53T alpha-synuclein transgenic mice. Moreover, we found that LRRK2 promoted the abnormal aggregation and somatic accumulation of alpha-synuclein in A53T mice, which likely resulted from the impairment of microtubule dynamics, Golgi organization, and the ubiquitin-proteasome pathway. Conversely, genetic ablation of LRRK2 preserved the Golgi structure and suppressed the aggregation and somatic accumulation of alpha-synuclein, and thereby delayed the progression of neuropathology in A53T mice. These findings demonstrate that overexpression of LRRK2 enhances alpha-synuclein-mediated cytotoxicity and suggest inhibition of LRRK2 expression as a potential therapeutic option for ameliorating alpha-synuclein-induced neurodegeneration.

摘要

α-突触核蛋白和富亮氨酸重复激酶 2(LRRK2)的突变与常染色体显性形式的帕金森病(PD)有关。然而,人们对这两个与 PD 相关的基因之间任何潜在的病理生理学相互作用知之甚少。在这里,我们在转基因小鼠中表明,尽管单独过表达 LRRK2本身不会导致神经退行性变,但过量的 LRRK2 大大加速了 PD 相关 A53T α-突触核蛋白转基因小鼠中发展的神经病理学异常的进展。此外,我们发现 LRRK2 促进了 A53T 小鼠中 α-突触核蛋白的异常聚集和体细胞积累,这可能是由于微管动力学、高尔基组织和泛素-蛋白酶体途径受损所致。相反,LRRK2 的基因缺失保留了高尔基结构,抑制了 α-突触核蛋白的聚集和体细胞积累,从而延缓了 A53T 小鼠神经病理学的进展。这些发现表明,LRRK2 的过表达增强了 α-突触核蛋白介导的细胞毒性,并表明抑制 LRRK2 的表达可能是改善 α-突触核蛋白诱导的神经退行性变的潜在治疗选择。

相似文献

2
alpha-synuclein and LRRK2: partners in crime.
Neuron. 2009 Dec 24;64(6):771-3. doi: 10.1016/j.neuron.2009.12.017.
3
Neurodegenerative phenotypes in an A53T α-synuclein transgenic mouse model are independent of LRRK2.
Hum Mol Genet. 2012 Jun 1;21(11):2420-31. doi: 10.1093/hmg/dds057. Epub 2012 Feb 21.
5
G2019S-LRRK2 Expression Augments α-Synuclein Sequestration into Inclusions in Neurons.
J Neurosci. 2016 Jul 13;36(28):7415-27. doi: 10.1523/JNEUROSCI.3642-15.2016.
6
Leucine-rich Repeat Kinase 2 (LRRK2) Pharmacological Inhibition Abates α-Synuclein Gene-induced Neurodegeneration.
J Biol Chem. 2015 Aug 7;290(32):19433-44. doi: 10.1074/jbc.M115.660001. Epub 2015 Jun 15.
7
Interaction of LRRK2 and α-Synuclein in Parkinson's Disease.
Adv Neurobiol. 2017;14:209-226. doi: 10.1007/978-3-319-49969-7_11.
8
LRRK2 activity does not dramatically alter α-synuclein pathology in primary neurons.
Acta Neuropathol Commun. 2018 May 31;6(1):45. doi: 10.1186/s40478-018-0550-0.
9
The unlikely partnership between LRRK2 and α-synuclein in Parkinson's disease.
Eur J Neurosci. 2019 Feb;49(3):339-363. doi: 10.1111/ejn.14182. Epub 2018 Oct 24.
10
LRRK2 interactions with α-synuclein in Parkinson's disease brains and in cell models.
J Mol Med (Berl). 2013 Apr;91(4):513-22. doi: 10.1007/s00109-012-0984-y. Epub 2012 Nov 27.

引用本文的文献

1
MicroRNAs and synaptic dysfunction in Parkinson's disease.
Mol Ther Nucleic Acids. 2025 Aug 12;36(3):102673. doi: 10.1016/j.omtn.2025.102673. eCollection 2025 Sep 9.
2
Parkinson's disease: genetics and neuroinflammatory insights.
Inflammopharmacology. 2025 Jul 3. doi: 10.1007/s10787-025-01832-9.
3
Widespread distribution of α-synuclein oligomers in LRRK2-related Parkinson's disease.
Acta Neuropathol. 2025 May 2;149(1):42. doi: 10.1007/s00401-025-02872-9.
4
IC100 blocks inflammasome activation induced by α-synuclein aggregates and ASC specks.
NPJ Parkinsons Dis. 2025 Apr 25;11(1):92. doi: 10.1038/s41531-025-00963-8.
6
Limitations and Applications of Rodent Models in Tauopathy and Synucleinopathy Research.
J Neurochem. 2025 Mar;169(3):e70021. doi: 10.1111/jnc.70021.
7
Virtual screening: hope, hype, and the fine line in between.
Expert Opin Drug Discov. 2025 Feb;20(2):145-162. doi: 10.1080/17460441.2025.2458666. Epub 2025 Jan 27.
8
Widespread Distribution of α-Synuclein Oligomers in -related Parkinson's Disease.
bioRxiv. 2024 Dec 20:2024.12.18.629265. doi: 10.1101/2024.12.18.629265.
9
Genetic mutations in kinases: a comprehensive review on marketed inhibitors and unexplored targets in Parkinson's disease.
Neurol Sci. 2025 Apr;46(4):1509-1524. doi: 10.1007/s10072-024-07970-2. Epub 2025 Jan 6.
10
Loss of LRRK2 activity induces cytoskeleton defects and oxidative stress during porcine oocyte maturation.
Cell Commun Signal. 2025 Jan 2;23(1):2. doi: 10.1186/s12964-024-01997-w.

本文引用的文献

1
R1441C mutation in LRRK2 impairs dopaminergic neurotransmission in mice.
Proc Natl Acad Sci U S A. 2009 Aug 25;106(34):14622-7. doi: 10.1073/pnas.0906334106. Epub 2009 Aug 10.
3
Mutant LRRK2(R1441G) BAC transgenic mice recapitulate cardinal features of Parkinson's disease.
Nat Neurosci. 2009 Jul;12(7):826-8. doi: 10.1038/nn.2349. Epub 2009 Jun 7.
4
Lrrk2 and alpha-synuclein are co-regulated in rodent striatum.
Mol Cell Neurosci. 2008 Dec;39(4):586-91. doi: 10.1016/j.mcn.2008.08.001. Epub 2008 Aug 27.
5
Phosphorylation of 4E-BP by LRRK2 affects the maintenance of dopaminergic neurons in Drosophila.
EMBO J. 2008 Sep 17;27(18):2432-43. doi: 10.1038/emboj.2008.163. Epub 2008 Aug 14.
6
Cytoskeletal requirements in axonal transport of slow component-b.
J Neurosci. 2008 May 14;28(20):5248-56. doi: 10.1523/JNEUROSCI.0309-08.2008.
8
A Drosophila model for LRRK2-linked parkinsonism.
Proc Natl Acad Sci U S A. 2008 Feb 19;105(7):2693-8. doi: 10.1073/pnas.0708452105. Epub 2008 Feb 7.
9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验