Suppr超能文献

基于局部结构的脑磁共振图像感兴趣区域检索

Local structure-based region-of-interest retrieval in brain MR images.

作者信息

Unay Devrim, Ekin Ahmet, Jasinschi Radu S

机构信息

Video Processing and Analysis Group, Philips Research Europe, 5656 AE Eindhoven, The Netherlands.

出版信息

IEEE Trans Inf Technol Biomed. 2010 Jul;14(4):897-903. doi: 10.1109/TITB.2009.2038152. Epub 2010 Jan 8.

Abstract

The aging population and the growing amount of medical data have increased the need for automated tools in the neurology departments. Although the researchers have been developing computerized methods to help the medical expert, these efforts have primarily emphasized to improve the effectiveness in single patient data, such as computing a brain lesion size. However, patient-to-patient comparison that should help improve diagnosis and therapy has not received much attention. To this effect, this paper introduces a fast and robust region-of-interest retrieval method for brain MR images. We make the following various contributions to the domains of brain MR image analysis, and search and retrieval system: 1) we show the potential and robustness of local structure information in the search and retrieval of brain MR images; 2) we provide analysis of two complementary features, local binary patterns (LBPs) and Kanade-Lucas-Tomasi feature points, and their comparison with a baseline method; 3) we show that incorporating spatial context in the features substantially improves accuracy; and 4) we automatically extract dominant LBPs and demonstrate their effectiveness relative to the conventional LBP approach. Comprehensive experiments on real and simulated datasets revealed that dominant LBPs with spatial context is robust to geometric deformations and intensity variations, and have high accuracy and speed even in pathological cases. The proposed method can not only aid the medical expert in disease diagnosis, or be used in scout (localizer) scans for optimization of acquisition parameters, but also supports low-power handheld devices.

摘要

人口老龄化以及医学数据量的不断增加,使得神经科对自动化工具的需求日益增长。尽管研究人员一直在开发计算机化方法来协助医学专家,但这些努力主要侧重于提高单患者数据的处理效率,比如计算脑损伤大小。然而,有助于改善诊断和治疗的患者间比较却未得到太多关注。为此,本文介绍了一种用于脑部磁共振成像(MR)的快速且稳健的感兴趣区域检索方法。我们在脑部MR图像分析以及搜索与检索系统领域做出了以下多方面贡献:1)我们展示了局部结构信息在脑部MR图像搜索与检索中的潜力和稳健性;2)我们对局部二值模式(LBP)和卡纳德 - 卢卡斯 - 托马西(Kanade - Lucas - Tomasi)特征点这两种互补特征进行了分析,并将它们与一种基线方法进行比较;3)我们表明在特征中纳入空间上下文能显著提高准确率;4)我们自动提取主导LBP并证明其相对于传统LBP方法的有效性。在真实和模拟数据集上进行的综合实验表明,带有空间上下文的主导LBP对几何变形和强度变化具有稳健性,即使在病理情况下也具有高准确率和速度。所提出的方法不仅可以帮助医学专家进行疾病诊断,或用于定位扫描以优化采集参数,还支持低功耗手持设备。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验