Suppr超能文献

基于内容的医学图像检索:多维和多模态数据应用综述。

Content-based medical image retrieval: a survey of applications to multidimensional and multimodality data.

机构信息

Biomedical and Multimedia Information Technology (BMIT) Research Group, School of Information Technologies, University of Sydney, Building J12, Sydney, NSW, 2006, Australia,

出版信息

J Digit Imaging. 2013 Dec;26(6):1025-39. doi: 10.1007/s10278-013-9619-2.

Abstract

Medical imaging is fundamental to modern healthcare, and its widespread use has resulted in the creation of image databases, as well as picture archiving and communication systems. These repositories now contain images from a diverse range of modalities, multidimensional (three-dimensional or time-varying) images, as well as co-aligned multimodality images. These image collections offer the opportunity for evidence-based diagnosis, teaching, and research; for these applications, there is a requirement for appropriate methods to search the collections for images that have characteristics similar to the case(s) of interest. Content-based image retrieval (CBIR) is an image search technique that complements the conventional text-based retrieval of images by using visual features, such as color, texture, and shape, as search criteria. Medical CBIR is an established field of study that is beginning to realize promise when applied to multidimensional and multimodality medical data. In this paper, we present a review of state-of-the-art medical CBIR approaches in five main categories: two-dimensional image retrieval, retrieval of images with three or more dimensions, the use of nonimage data to enhance the retrieval, multimodality image retrieval, and retrieval from diverse datasets. We use these categories as a framework for discussing the state of the art, focusing on the characteristics and modalities of the information used during medical image retrieval.

摘要

医学成像在现代医疗保健中至关重要,其广泛应用导致了图像数据库的创建,以及图像存档和通信系统的出现。这些存储库现在包含了来自各种模态的图像、多维(三维或时变)图像以及对齐的多模态图像。这些图像集合为基于证据的诊断、教学和研究提供了机会;对于这些应用,需要有适当的方法来搜索具有与感兴趣病例相似特征的图像。基于内容的图像检索(CBIR)是一种图像搜索技术,它通过使用视觉特征(如颜色、纹理和形状)作为搜索标准,补充了传统的基于文本的图像检索。医学 CBIR 是一个已建立的研究领域,当应用于多维和多模态医学数据时,开始展现出其潜力。在本文中,我们将回顾五个主要类别的最先进的医学 CBIR 方法:二维图像检索、三维或更多维图像的检索、使用非图像数据增强检索、多模态图像检索以及从不同数据集进行检索。我们使用这些类别作为讨论现状的框架,重点关注在医学图像检索过程中使用的信息的特征和模态。

相似文献

1
Content-based medical image retrieval: a survey of applications to multidimensional and multimodality data.
J Digit Imaging. 2013 Dec;26(6):1025-39. doi: 10.1007/s10278-013-9619-2.
2
4
Medical image categorization and retrieval for PACS using the GMM-KL framework.
IEEE Trans Inf Technol Biomed. 2007 Mar;11(2):190-202. doi: 10.1109/titb.2006.874191.
6
Content-based image retrieval in radiology: current status and future directions.
J Digit Imaging. 2011 Apr;24(2):208-22. doi: 10.1007/s10278-010-9290-9.
7
PET/CT image navigation and communication.
J Nucl Med. 2004 Jan;45 Suppl 1:46S-55S.
8
A reference data set for the evaluation of medical image retrieval systems.
Comput Med Imaging Graph. 2004 Sep;28(6):295-305. doi: 10.1016/j.compmedimag.2004.04.005.
9
Content-based image retrieval for large biomedical image archives.
Stud Health Technol Inform. 2004;107(Pt 2):829-33.
10
A Visual Analytics Approach Using the Exploration of Multidimensional Feature Spaces for Content-Based Medical Image Retrieval.
IEEE J Biomed Health Inform. 2015 Sep;19(5):1734-46. doi: 10.1109/JBHI.2014.2361318. Epub 2014 Oct 3.

引用本文的文献

1
Content-Based Histopathological Image Retrieval.
Sensors (Basel). 2025 Feb 22;25(5):1350. doi: 10.3390/s25051350.
2
Learning to Match 2D Keypoints Across Preoperative MR and Intraoperative Ultrasound.
Simpl Med Ultrasound (2024). 2025;15186:78-87. doi: 10.1007/978-3-031-73647-6_8. Epub 2024 Oct 5.
4
On image search in histopathology.
J Pathol Inform. 2024 Apr 4;15:100375. doi: 10.1016/j.jpi.2024.100375. eCollection 2024 Dec.
5
Novel in-house knowledge-based automated planning system for lung cancer treated with intensity-modulated radiotherapy.
Strahlenther Onkol. 2024 Nov;200(11):967-982. doi: 10.1007/s00066-023-02126-1. Epub 2023 Aug 21.
6
Improving the Automatic Classification of Brain MRI Acquisition Contrast with Machine Learning.
J Digit Imaging. 2023 Feb;36(1):289-305. doi: 10.1007/s10278-022-00690-z. Epub 2022 Aug 8.
7
A spatial neighborhood methodology for computing and analyzing lymph node carcinoma similarity in precision medicine.
J Biomed Inform. 2020;112S:100067. doi: 10.1016/j.yjbinx.2020.100067. Epub 2020 Feb 3.
8
A rotation and translation invariant method for 3D organ image classification using deep convolutional neural networks.
PeerJ Comput Sci. 2019 Mar 4;5:e181. doi: 10.7717/peerj-cs.181. eCollection 2019.
9
Medical Image Retrieval Using Empirical Mode Decomposition with Deep Convolutional Neural Network.
Biomed Res Int. 2020 Dec 26;2020:6687733. doi: 10.1155/2020/6687733. eCollection 2020.

本文引用的文献

1
A Deep Clustering Method For Analyzing Uterine Cervix Images Across Imaging Devices.
Proc IEEE Int Symp Comput Based Med Syst. 2021 Jun;2021:527-532. doi: 10.1109/cbms52027.2021.00085. Epub 2021 Jul 12.
2
A graph-based approach to the retrieval of volumetric PET-CT lung images.
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:5408-11. doi: 10.1109/EMBC.2012.6347217.
3
Content-based microscopic image retrieval system for multi-image queries.
IEEE Trans Inf Technol Biomed. 2012 Jul;16(4):758-69. doi: 10.1109/TITB.2012.2185829. Epub 2012 Jan 31.
4
Thoracic image matching with appearance and spatial distribution.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:4469-72. doi: 10.1109/IEMBS.2011.6091108.
5
A step towards unification of syntactic and statistical pattern recognition.
IEEE Trans Pattern Anal Mach Intell. 1986 Mar;8(3):398-404. doi: 10.1109/tpami.1986.4767800.
6
Case-based fracture image retrieval.
Int J Comput Assist Radiol Surg. 2012 May;7(3):401-11. doi: 10.1007/s11548-011-0643-8. Epub 2011 Jul 29.
7
Case-based lung image categorization and retrieval for interstitial lung diseases: clinical workflows.
Int J Comput Assist Radiol Surg. 2012 Jan;7(1):97-110. doi: 10.1007/s11548-011-0618-9. Epub 2011 Jun 1.
8
Medical case retrieval from a committee of decision trees.
IEEE Trans Inf Technol Biomed. 2010 Sep;14(5):1227-35. doi: 10.1109/TITB.2010.2053716.
9
Case retrieval in medical databases by fusing heterogeneous information.
IEEE Trans Med Imaging. 2011 Jan;30(1):108-18. doi: 10.1109/TMI.2010.2063711. Epub 2010 Aug 5.
10
The use of μCT technology to identify skull fracture in a case involving blunt force trauma.
Forensic Sci Int. 2011 Mar 20;206(1-3):e8-11. doi: 10.1016/j.forsciint.2010.06.013. Epub 2010 Jul 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验