Division of Emergency Medicine, Children's Hospital Boston and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA.
J Am Med Inform Assoc. 2010 Jan-Feb;17(1):85-90. doi: 10.1197/jamia.M3061.
To improve identification of pertussis cases by developing a decision model that incorporates recent, local, population-level disease incidence.
Retrospective cohort analysis of 443 infants tested for pertussis (2003-7).
Three models (based on clinical data only, local disease incidence only, and a combination of clinical data and local disease incidence) to predict pertussis positivity were created with demographic, historical, physical exam, and state-wide pertussis data. Models were compared using sensitivity, specificity, area under the receiver-operating characteristics (ROC) curve (AUC), and related metrics.
The model using only clinical data included cyanosis, cough for 1 week, and absence of fever, and was 89% sensitive (95% CI 79 to 99), 27% specific (95% CI 22 to 32) with an area under the ROC curve of 0.80. The model using only local incidence data performed best when the proportion positive of pertussis cultures in the region exceeded 10% in the 8-14 days prior to the infant's associated visit, achieving 13% sensitivity, 53% specificity, and AUC 0.65. The combined model, built with patient-derived variables and local incidence data, included cyanosis, cough for 1 week, and the variable indicating that the proportion positive of pertussis cultures in the region exceeded 10% 8-14 days prior to the infant's associated visit. This model was 100% sensitive (p<0.04, 95% CI 92 to 100), 38% specific (p<0.001, 95% CI 33 to 43), with AUC 0.82.
Incorporating recent, local population-level disease incidence improved the ability of a decision model to correctly identify infants with pertussis. Our findings support fostering bidirectional exchange between public health and clinical practice, and validate a method for integrating large-scale public health datasets with rich clinical data to improve decision-making and public health.
通过开发一种纳入近期本地人群疾病发病率的决策模型来提高百日咳病例的识别能力。
对 443 名接受百日咳检测的婴儿(2003-2007 年)进行回顾性队列分析。
利用人口统计学、病史、体检和全州百日咳数据,为预测百日咳阳性建立了三种模型(仅基于临床数据、仅基于当地疾病发病率和临床数据与当地疾病发病率相结合)。通过敏感性、特异性、受试者工作特征(ROC)曲线下面积(AUC)和相关指标比较模型。
仅使用临床数据的模型包括发绀、咳嗽持续 1 周且无发热,敏感性为 89%(95%CI 79%至 99%),特异性为 27%(95%CI 22%至 32%),ROC 曲线下面积为 0.80。当区域内百日咳培养阳性率在婴儿就诊前 8-14 天超过 10%时,仅使用本地发病率数据的模型表现最佳,其敏感性为 13%,特异性为 53%,AUC 为 0.65。基于患者衍生变量和本地发病率数据构建的组合模型包括发绀、咳嗽持续 1 周,以及指示婴儿就诊前 8-14 天区域内百日咳培养阳性率超过 10%的变量。该模型的敏感性为 100%(p<0.04,95%CI 92%至 100%),特异性为 38%(p<0.001,95%CI 33%至 43%),AUC 为 0.82。
纳入近期本地人群疾病发病率可提高决策模型正确识别百日咳婴儿的能力。我们的研究结果支持促进公共卫生和临床实践之间的双向交流,并验证了一种将大规模公共卫生数据集与丰富的临床数据相结合以改善决策和公共卫生的方法。