Suppr超能文献

基于 29 年动物监测数据的新墨西哥州鼠疫病例年内和年际分布的气候预测因子。

Climatic predictors of the intra- and inter-annual distributions of plague cases in New Mexico based on 29 years of animal-based surveillance data.

机构信息

Centers for Disease Control and Prevention (CDC), National Center for Zoonotic, Vector-Borne and Enteric Diseases, Division of Vector-Borne Infectious Diseases, 3150 Rampart Road, Foothills Campus, Fort Collins, CO 80522, USA.

出版信息

Am J Trop Med Hyg. 2010 Jan;82(1):95-102. doi: 10.4269/ajtmh.2010.09-0247.

Abstract

Within the United States, the majority of human plague cases are reported from New Mexico. We describe climatic factors involved in intra- and inter-annual plague dynamics using animal-based surveillance data from that state. Unlike the clear seasonal pattern observed at lower elevations, cases occur randomly throughout the year at higher elevations. Increasing elevation corresponded with delayed mean time in case presentation. Using local meteorological data (previous year mean annual precipitation, total degrees over 27 degrees C 3 years before and maximum winter temperatures 4 years before) we built a time-series model predicting annual case load that explained 75% of the variance in pet cases between years. Moreover, we found a significant correlation with observed annual human cases and predicted pet cases. Because covariates were time-lagged by at least 1 year, intensity of case loads can be predicted in advance of a plague season. Understanding associations between environmental and meteorological factors can be useful for anticipating future disease trends.

摘要

在美国,大多数人间鼠疫病例报告来自新墨西哥州。我们使用该州基于动物的监测数据描述了与鼠疫在年内和年际动态相关的气候因素。与较低海拔地区观察到的明显季节性模式不同,较高海拔地区的病例全年随机发生。海拔升高与病例呈现的平均时间延迟有关。使用当地气象数据(前一年的平均年降水量、27°C 以上的总度数,以及前 4 年的冬季最高温度),我们建立了一个时间序列模型,预测每年的病例数,解释了宠物病例年度差异的 75%。此外,我们发现与观察到的年度人类病例和预测的宠物病例之间存在显著相关性。由于协变量至少滞后 1 年,因此可以在鼠疫季节之前提前预测病例负荷的强度。了解环境和气象因素之间的关联对于预测未来的疾病趋势可能很有用。

相似文献

3
Incidence of plague associated with increased winter-spring precipitation in New Mexico.
Am J Trop Med Hyg. 1999 Nov;61(5):814-21. doi: 10.4269/ajtmh.1999.61.814.
6
Plague cases escalate again in New Mexico.
J Am Vet Med Assoc. 1998 Jul 15;213(2):192-3.
7
Human plague in the USA: the importance of regional and local climate.
Biol Lett. 2008 Dec 23;4(6):737-40. doi: 10.1098/rsbl.2008.0363.
8
Feline plague in New Mexico: risk factors and transmission to humans.
Am J Public Health. 1988 Oct;78(10):1333-5. doi: 10.2105/ajph.78.10.1333.
9
Human plague--United States, 1993-1994.
MMWR Morb Mortal Wkly Rep. 1994 Apr 8;43(13):242-6.

引用本文的文献

1
Revisiting the Relationship between Weather and Interannual Variation in Human Plague Cases in the Southwestern United States.
Am J Trop Med Hyg. 2025 Jan 14;112(4):840-844. doi: 10.4269/ajtmh.24-0255. Print 2025 Apr 2.
2
Ecologic, Geoclimatic, and Genomic Factors Modulating Plague Epidemics in Primary Natural Focus, Brazil.
Emerg Infect Dis. 2024 Sep;30(9):1850-1864. doi: 10.3201/eid3009.240468.
3
Predicting global potential distribution of and and risk assessment for invading China under climate change.
Front Public Health. 2023 Jan 5;10:1018327. doi: 10.3389/fpubh.2022.1018327. eCollection 2022.
4
Plague risk in the western United States over seven decades of environmental change.
Glob Chang Biol. 2022 Feb;28(3):753-769. doi: 10.1111/gcb.15966. Epub 2021 Nov 18.
5
Flea-Associated Bacterial Communities across an Environmental Transect in a Plague-Endemic Region of Uganda.
PLoS One. 2015 Oct 20;10(10):e0141057. doi: 10.1371/journal.pone.0141057. eCollection 2015.
7
Improvement of disease prediction and modeling through the use of meteorological ensembles: human plague in Uganda.
PLoS One. 2012;7(9):e44431. doi: 10.1371/journal.pone.0044431. Epub 2012 Sep 14.
8
Flea diversity as an element for persistence of plague bacteria in an East African plague focus.
PLoS One. 2012;7(4):e35598. doi: 10.1371/journal.pone.0035598. Epub 2012 Apr 18.
9
Climate predictors of the spatial distribution of human plague cases in the West Nile region of Uganda.
Am J Trop Med Hyg. 2012 Mar;86(3):514-23. doi: 10.4269/ajtmh.2012.11-0569.

本文引用的文献

3
Climate and vectorborne diseases.
Am J Prev Med. 2008 Nov;35(5):436-50. doi: 10.1016/j.amepre.2008.08.030.
4
Adaptive strategies of Yersinia pestis to persist during inter-epizootic and epizootic periods.
Vet Res. 2009 Mar-Apr;40(2):1. doi: 10.1051/vetres:2008039. Epub 2008 Sep 23.
5
Human plague in the USA: the importance of regional and local climate.
Biol Lett. 2008 Dec 23;4(6):737-40. doi: 10.1098/rsbl.2008.0363.
6
Dog-associated risk factors for human plague.
Zoonoses Public Health. 2008 Oct;55(8-10):448-54. doi: 10.1111/j.1863-2378.2008.01132.x. Epub 2008 May 16.
8
Climatically driven synchrony of gerbil populations allows large-scale plague outbreaks.
Proc Biol Sci. 2007 Aug 22;274(1621):1963-9. doi: 10.1098/rspb.2007.0568.
9
Human plague in the southwestern United States, 1957-2004: spatial models of elevated risk of human exposure to Yersinia pestis.
J Med Entomol. 2007 May;44(3):530-7. doi: 10.1603/0022-2585(2007)44[530:hpitsu]2.0.co;2.
10
Early-phase transmission of Yersinia pestis by unblocked fleas as a mechanism explaining rapidly spreading plague epizootics.
Proc Natl Acad Sci U S A. 2006 Oct 17;103(42):15380-5. doi: 10.1073/pnas.0606831103. Epub 2006 Oct 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验