Suppr超能文献

利用微阵列技术对具有不同麦芽三糖利用谱的麦芽糖发酵酵母进行核型分析,揭示了参与麦芽糖和麦芽三糖利用的基因的拷贝数变化。

Microarray karyotyping of maltose-fermenting Saccharomyces yeasts with differing maltotriose utilization profiles reveals copy number variation in genes involved in maltose and maltotriose utilization.

机构信息

Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.

出版信息

J Appl Microbiol. 2010 Jul;109(1):248-59. doi: 10.1111/j.1365-2672.2009.04656.x. Epub 2009 Dec 18.

Abstract

AIMS

We performed an analysis of maltotriose utilization by 52 Saccharomyces yeast strains able to ferment maltose efficiently and correlated the observed phenotypes with differences in the copy number of genes possibly involved in maltotriose utilization by yeast cells.

METHODS AND RESULTS

The analysis of maltose and maltotriose utilization by laboratory and industrial strains of the species Saccharomyces cerevisiae and Saccharomyces pastorianus (a natural S. cerevisiae/Saccharomyces bayanus hybrid) was carried out using microscale liquid cultivation, as well as in aerobic batch cultures. All strains utilize maltose efficiently as a carbon source, but three different phenotypes were observed for maltotriose utilization: efficient growth, slow/delayed growth and no growth. Through microarray karyotyping and pulsed-field gel electrophoresis blots, we analysed the copy number and localization of several maltose-related genes in selected S. cerevisiae strains. While most strains lacked the MPH2 and MPH3 transporter genes, almost all strains analysed had the AGT1 gene and increased copy number of MALx1 permeases.

CONCLUSIONS

Our results showed that S. pastorianus yeast strains utilized maltotriose more efficiently than S. cerevisiae strains and highlighted the importance of the AGT1 gene for efficient maltotriose utilization by S. cerevisiae yeasts.

SIGNIFICANCE AND IMPACT OF THE STUDY

Our results revealed new maltotriose utilization phenotypes, contributing to a better understanding of the metabolism of this carbon source for improved fermentation by Saccharomyces yeasts.

摘要

目的

我们分析了 52 株能够高效发酵麦芽糖的酿酒酵母菌株对麦芽三糖的利用情况,并将观察到的表型与可能参与酵母细胞利用麦芽三糖的基因的拷贝数差异相关联。

方法和结果

我们使用微尺度液体培养以及好氧分批培养,对酿酒酵母和发酵毕赤酵母(一种天然的酿酒酵母/贝酵母杂种)的实验室和工业菌株的麦芽糖和麦芽三糖利用进行了分析。所有菌株都能有效地将麦芽糖作为碳源利用,但在利用麦芽三糖方面观察到三种不同的表型:高效生长、缓慢/延迟生长和不生长。通过微阵列核型分析和脉冲场凝胶电泳印迹,我们分析了选定酿酒酵母菌株中几种与麦芽糖相关基因的拷贝数和定位。虽然大多数菌株缺乏 MPH2 和 MPH3 转运蛋白基因,但几乎所有分析的菌株都具有 AGT1 基因和 MALx1 通透酶的拷贝数增加。

结论

我们的结果表明,发酵毕赤酵母菌株比酿酒酵母菌株更有效地利用麦芽三糖,并强调了 AGT1 基因对酿酒酵母高效利用麦芽三糖的重要性。

研究的意义和影响

我们的研究结果揭示了新的麦芽三糖利用表型,有助于更好地了解这种碳源的代谢,以提高酿酒酵母的发酵能力。

相似文献

2
4
Himalayan Genome Sequences Reveal Genetic Markers Explaining Heterotic Maltotriose Consumption by Saccharomyces pastorianus Hybrids.
Appl Environ Microbiol. 2019 Oct 30;85(22). doi: 10.1128/AEM.01516-19. Print 2019 Nov 15.
5
Expression patterns of genes and association with differential maltose and maltotriose transport rate of two yeasts.
Appl Environ Microbiol. 2024 Jul 24;90(7):e0039724. doi: 10.1128/aem.00397-24. Epub 2024 Jul 8.
6
Maltose and maltotriose utilisation by group I strains of the hybrid lager yeast Saccharomyces pastorianus.
FEMS Yeast Res. 2016 Aug;16(5). doi: 10.1093/femsyr/fow053. Epub 2016 Jun 30.
7
Improved fermentation performance of a lager yeast after repair of its AGT1 maltose and maltotriose transporter genes.
Appl Environ Microbiol. 2009 Apr;75(8):2333-45. doi: 10.1128/AEM.01558-08. Epub 2009 Jan 30.
10
Molecular analysis of maltotriose transport and utilization by Saccharomyces cerevisiae.
Appl Environ Microbiol. 2002 Nov;68(11):5326-35. doi: 10.1128/AEM.68.11.5326-5335.2002.

引用本文的文献

2
Obtaining new brewing yeasts using regional Chilean wine yeasts through an adaptive evolution program.
Front Microbiol. 2025 Jun 16;16:1599904. doi: 10.3389/fmicb.2025.1599904. eCollection 2025.
3
Expansion of maltose/sucrose related transporters in Ascomycetes and their association with corresponding disaccharide utilization.
Curr Res Microb Sci. 2025 Mar 3;8:100368. doi: 10.1016/j.crmicr.2025.100368. eCollection 2025.
4
Specialization Restricts the Evolutionary Paths Available to Yeast Sugar Transporters.
Mol Biol Evol. 2024 Nov 1;41(11). doi: 10.1093/molbev/msae228.
5
Specialization restricts the evolutionary paths available to yeast sugar transporters.
bioRxiv. 2024 Jul 23:2024.07.22.604696. doi: 10.1101/2024.07.22.604696.
6
Selection for robust metabolism in domesticated yeasts is driven by adaptation to Hsp90 stress.
Science. 2024 Jul 26;385(6707):eadi3048. doi: 10.1126/science.adi3048.
7
Improved Sugarcane-Based Fermentation Processes by an Industrial Fuel-Ethanol Yeast Strain.
J Fungi (Basel). 2023 Jul 29;9(8):803. doi: 10.3390/jof9080803.
9
Complete genome sequence and analysis of a Saccharomyces cerevisiae strain used for sugarcane spirit production.
Braz J Microbiol. 2021 Sep;52(3):1087-1095. doi: 10.1007/s42770-021-00444-z. Epub 2021 Apr 9.
10
History and Domestication of in Bread Baking.
Front Genet. 2020 Nov 11;11:584718. doi: 10.3389/fgene.2020.584718. eCollection 2020.

本文引用的文献

1
Industrial fuel ethanol yeasts contain adaptive copy number changes in genes involved in vitamin B1 and B6 biosynthesis.
Genome Res. 2009 Dec;19(12):2271-8. doi: 10.1101/gr.094276.109. Epub 2009 Nov 6.
2
Gly-46 and His-50 of yeast maltose transporter Mal21p are essential for its resistance against glucose-induced degradation.
J Biol Chem. 2009 Jun 5;284(23):15448-57. doi: 10.1074/jbc.M808151200. Epub 2009 Apr 7.
3
Genome sequence of the lager brewing yeast, an interspecies hybrid.
DNA Res. 2009 Apr;16(2):115-29. doi: 10.1093/dnares/dsp003. Epub 2009 Mar 4.
4
The complex and dynamic genomes of industrial yeasts.
FEMS Microbiol Lett. 2009 Apr;293(1):1-10. doi: 10.1111/j.1574-6968.2008.01480.x. Epub 2009 Jan 17.
5
Reconstruction of the genome origins and evolution of the hybrid lager yeast Saccharomyces pastorianus.
Genome Res. 2008 Oct;18(10):1610-23. doi: 10.1101/gr.076075.108. Epub 2008 Sep 11.
6
Yeast selection for fuel ethanol production in Brazil.
FEMS Yeast Res. 2008 Nov;8(7):1155-63. doi: 10.1111/j.1567-1364.2008.00428.x. Epub 2008 Aug 22.
8
The Thr505 and Ser557 residues of the AGT1-encoded alpha-glucoside transporter are critical for maltotriose transport in Saccharomyces cerevisiae.
J Appl Microbiol. 2008 Apr;104(4):1103-11. doi: 10.1111/j.1365-2672.2007.03671.x. Epub 2007 Dec 20.
9
Use of selected indigenous Saccharomyces cerevisiae strains for the production of the traditional cachaça in Brazil.
J Appl Microbiol. 2007 Dec;103(6):2438-47. doi: 10.1111/j.1365-2672.2007.03486.x.
10
Genome sequencing and comparative analysis of Saccharomyces cerevisiae strain YJM789.
Proc Natl Acad Sci U S A. 2007 Jul 31;104(31):12825-30. doi: 10.1073/pnas.0701291104. Epub 2007 Jul 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验