Suppr超能文献

来自黄色瘤胃球菌的包含天然截短型锚定蛋白的黏连蛋白-锚定蛋白复合物的三方结合模式

Tripartite binding mode of cohesin-dockerin complexes from Ruminococcus flavefaciens involving naturally truncated dockerins.

作者信息

Duarte Marlene, Carvalho Ana Luísa, Ferreira Magda C, Caires Beatriz, Romão Maria João, Prates José A M, Najmudin Shabir, Bayer Edward A, Fontes Carlos Mga, Bule Pedro

机构信息

CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal; Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Lisbon, Portugal.

UCIBIO, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal.

出版信息

J Biol Chem. 2025 Jul;301(7):110325. doi: 10.1016/j.jbc.2025.110325. Epub 2025 Jun 2.

Abstract

Polysaccharides in plant cell walls serve as a rich carbon and energy source, yet their structural complexity presents a barrier to efficient degradation. To address this, anaerobic microorganisms like R. flavefaciens have developed sophisticated multi-enzyme complexes known as cellulosomes, which enable the efficient breakdown of these recalcitrant polysaccharides. These complexes are assembled through high-affinity interactions between cohesin (Coh) modules in scaffoldin proteins and dockerin (Doc) modules in cellulosomal enzymes. R. flavefaciens FD-1 harbors one of the most intricate cellulosomes described to date, comprising over 200 Doc-containing proteins encoded in its genome. Despite substantial research on this cellulosome, the role of a group of truncated but functional dockerins, known as group-2 Docs, remains unclear. In this study, we present a detailed structural and binding analysis of a Coh-Doc complex involving the cohesin from the cell-anchoring scaffoldin ScaE and a group-2 Doc that bears only one of the two Ca-coordinating loops that characterise the canonical Docs. Our findings reveal a novel tripartite binding mechanism, in which the cohesin can simultaneously bind two distinct dockerin units in three alternative conformations. This discovery provides new insights into the modular versatility of the R. flavefaciens cellulosome and sheds light on the mechanisms that enhance its efficiency in polysaccharide degradation.

摘要

植物细胞壁中的多糖是丰富的碳源和能源,但它们的结构复杂性对有效降解构成了障碍。为了解决这个问题,像黄褐瘤胃球菌这样的厌氧微生物已经开发出了复杂的多酶复合物,即纤维小体,它能够有效地分解这些难降解的多糖。这些复合物通过支架蛋白中的黏连蛋白(Coh)模块与纤维小体酶中的dockerin(Doc)模块之间的高亲和力相互作用进行组装。黄褐瘤胃球菌FD-1拥有迄今为止描述的最复杂的纤维小体之一,其基因组中编码了200多种含Doc的蛋白质。尽管对这种纤维小体进行了大量研究,但一组被称为2型Doc的截短但有功能的dockerin的作用仍不清楚。在这项研究中,我们对一个Coh-Doc复合物进行了详细的结构和结合分析,该复合物涉及来自细胞锚定支架蛋白ScaE的黏连蛋白和一个2型Doc,这个2型Doc只带有表征典型Doc的两个Ca配位环中的一个。我们的研究结果揭示了一种新的三方结合机制,其中黏连蛋白可以同时以三种不同构象结合两个不同的dockerin单元。这一发现为黄褐瘤胃球菌纤维小体的模块化多功能性提供了新的见解,并阐明了提高其多糖降解效率的机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a99e/12270676/0d4d82b68157/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验