Department of Biomedical and Molecular Sciences, University, Kingston, Ontario K7L 3N6, Canada.
J Biol Chem. 2012 Aug 3;287(32):26953-61. doi: 10.1074/jbc.M112.343897. Epub 2012 Jun 15.
Cellulosomes are multienzyme complexes responsible for efficient degradation of plant cell wall polysaccharides. The nonenzymatic scaffoldin subunit provides a platform for cellulolytic enzyme binding that enhances the overall activity of the bound enzymes. Understanding the unique quaternary structural elements responsible for the enzymatic synergy of the cellulosome is hindered by the large size and inherent flexibility of these multiprotein complexes. Herein, we have used x-ray crystallography and small angle x-ray scattering to structurally characterize a ternary protein complex from the Clostridium thermocellum cellulosome that comprises a C-terminal trimodular fragment of the CipA scaffoldin bound to the SdbA type II cohesin module and the type I dockerin module from the Cel9D glycoside hydrolase. This complex represents the largest fragment of the cellulosome solved by x-ray crystallography to date and reveals two rigid domains formed by the type I cohesin·dockerin complex and by the X module-type II cohesin·dockerin complex, which are separated by a 13-residue linker in an extended conformation. The type I dockerin modules of the four structural models found in the asymmetric unit are in an alternate orientation to that previously observed that provides further direct support for the dual mode of binding. Conserved intermolecular contacts between symmetry-related complexes were also observed and may play a role in higher order cellulosome structure. SAXS analysis of the ternary complex revealed that the 13-residue intermodular linker of the scaffoldin subunit is highly dynamic in solution. These studies provide fundamental insights into modular positioning, linker flexibility, and higher order organization of the cellulosome.
纤维小体是负责有效降解植物细胞壁多糖的多酶复合物。非酶支架亚基为纤维素酶结合提供了一个平台,增强了结合酶的整体活性。理解负责纤维小体酶协同作用的独特四级结构元素受到这些多蛋白复合物的大尺寸和固有灵活性的阻碍。在此,我们使用 X 射线晶体学和小角度 X 射线散射技术对来自嗜热梭菌纤维小体的一个三元蛋白复合物进行了结构表征,该复合物由 CipA 支架的 C 端三模块片段与 SdbA 型 II 粘着模块和 Cel9D 糖苷水解酶的 I 型 dockerin 模块组成。该复合物代表了迄今为止通过 X 射线晶体学解决的纤维小体的最大片段,并揭示了由 I 型粘着蛋白·dockerin 复合物和 X 模块- II 粘着蛋白·dockerin 复合物形成的两个刚性结构域,它们由一个 13 残基的连接子在伸展构象中分隔。在不对称单元中发现的四个结构模型的 I 型 dockerin 模块的取向与以前观察到的取向不同,这为双重结合模式提供了进一步的直接支持。还观察到对称相关复合物之间的保守分子间接触,它们可能在纤维小体的高级结构中发挥作用。对三元复合物的 SAXS 分析表明,支架亚基的 13 残基的模块间连接子在溶液中具有高度的动态性。这些研究为纤维小体的模块化定位、连接子的灵活性和高级结构提供了基础见解。