Suppr超能文献

热纤梭菌细胞外酶复合体三元复合物揭示的支架蛋白构象和动力学。

Scaffoldin conformation and dynamics revealed by a ternary complex from the Clostridium thermocellum cellulosome.

机构信息

Department of Biomedical and Molecular Sciences, University, Kingston, Ontario K7L 3N6, Canada.

出版信息

J Biol Chem. 2012 Aug 3;287(32):26953-61. doi: 10.1074/jbc.M112.343897. Epub 2012 Jun 15.

Abstract

Cellulosomes are multienzyme complexes responsible for efficient degradation of plant cell wall polysaccharides. The nonenzymatic scaffoldin subunit provides a platform for cellulolytic enzyme binding that enhances the overall activity of the bound enzymes. Understanding the unique quaternary structural elements responsible for the enzymatic synergy of the cellulosome is hindered by the large size and inherent flexibility of these multiprotein complexes. Herein, we have used x-ray crystallography and small angle x-ray scattering to structurally characterize a ternary protein complex from the Clostridium thermocellum cellulosome that comprises a C-terminal trimodular fragment of the CipA scaffoldin bound to the SdbA type II cohesin module and the type I dockerin module from the Cel9D glycoside hydrolase. This complex represents the largest fragment of the cellulosome solved by x-ray crystallography to date and reveals two rigid domains formed by the type I cohesin·dockerin complex and by the X module-type II cohesin·dockerin complex, which are separated by a 13-residue linker in an extended conformation. The type I dockerin modules of the four structural models found in the asymmetric unit are in an alternate orientation to that previously observed that provides further direct support for the dual mode of binding. Conserved intermolecular contacts between symmetry-related complexes were also observed and may play a role in higher order cellulosome structure. SAXS analysis of the ternary complex revealed that the 13-residue intermodular linker of the scaffoldin subunit is highly dynamic in solution. These studies provide fundamental insights into modular positioning, linker flexibility, and higher order organization of the cellulosome.

摘要

纤维小体是负责有效降解植物细胞壁多糖的多酶复合物。非酶支架亚基为纤维素酶结合提供了一个平台,增强了结合酶的整体活性。理解负责纤维小体酶协同作用的独特四级结构元素受到这些多蛋白复合物的大尺寸和固有灵活性的阻碍。在此,我们使用 X 射线晶体学和小角度 X 射线散射技术对来自嗜热梭菌纤维小体的一个三元蛋白复合物进行了结构表征,该复合物由 CipA 支架的 C 端三模块片段与 SdbA 型 II 粘着模块和 Cel9D 糖苷水解酶的 I 型 dockerin 模块组成。该复合物代表了迄今为止通过 X 射线晶体学解决的纤维小体的最大片段,并揭示了由 I 型粘着蛋白·dockerin 复合物和 X 模块- II 粘着蛋白·dockerin 复合物形成的两个刚性结构域,它们由一个 13 残基的连接子在伸展构象中分隔。在不对称单元中发现的四个结构模型的 I 型 dockerin 模块的取向与以前观察到的取向不同,这为双重结合模式提供了进一步的直接支持。还观察到对称相关复合物之间的保守分子间接触,它们可能在纤维小体的高级结构中发挥作用。对三元复合物的 SAXS 分析表明,支架亚基的 13 残基的模块间连接子在溶液中具有高度的动态性。这些研究为纤维小体的模块化定位、连接子的灵活性和高级结构提供了基础见解。

相似文献

1
Scaffoldin conformation and dynamics revealed by a ternary complex from the Clostridium thermocellum cellulosome.
J Biol Chem. 2012 Aug 3;287(32):26953-61. doi: 10.1074/jbc.M112.343897. Epub 2012 Jun 15.
3
Small angle X-ray scattering analysis of Clostridium thermocellum cellulosome N-terminal complexes reveals a highly dynamic structure.
J Biol Chem. 2013 Mar 15;288(11):7978-7985. doi: 10.1074/jbc.M112.408757. Epub 2013 Jan 22.
4
Purification and crystallization of a multimodular heterotrimeric complex containing both type I and type II cohesin-dockerin interactions from the cellulosome of Clostridium thermocellum.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2010 Mar 1;66(Pt 3):327-9. doi: 10.1107/S1744309110001375. Epub 2010 Feb 25.
7
Dynamic interactions of type I cohesin modules fine-tune the structure of the cellulosome of .
Proc Natl Acad Sci U S A. 2018 Nov 27;115(48):E11274-E11283. doi: 10.1073/pnas.1809283115. Epub 2018 Nov 14.
8
Solution conformation of a cohesin module and its scaffoldin linker from a prototypical cellulosome.
Arch Biochem Biophys. 2018 Apr 15;644:1-7. doi: 10.1016/j.abb.2018.02.016. Epub 2018 Feb 24.

引用本文的文献

2
Mechanochemical Coupling of Catalysis and Motion in a Cellulose-Degrading Multienzyme Nanomachine.
ACS Catal. 2024 Feb 6;14(4):2656-2663. doi: 10.1021/acscatal.3c05653. eCollection 2024 Feb 16.
3
Mapping the deformability of natural and designed cellulosomes in solution.
Biotechnol Biofuels Bioprod. 2022 Jun 20;15(1):68. doi: 10.1186/s13068-022-02165-3.
4
Nanoscale resolution of microbial fiber degradation in action.
Elife. 2022 May 31;11:e76523. doi: 10.7554/eLife.76523.
5
6
Research progress and the biotechnological applications of multienzyme complex.
Appl Microbiol Biotechnol. 2021 Mar;105(5):1759-1777. doi: 10.1007/s00253-021-11121-4. Epub 2021 Feb 10.
7
Cellulosomes: Highly Efficient Cellulolytic Complexes.
Subcell Biochem. 2021;96:323-354. doi: 10.1007/978-3-030-58971-4_9.
8
Dynamic interactions of type I cohesin modules fine-tune the structure of the cellulosome of .
Proc Natl Acad Sci U S A. 2018 Nov 27;115(48):E11274-E11283. doi: 10.1073/pnas.1809283115. Epub 2018 Nov 14.

本文引用的文献

1
Molecular architecture and structural transitions of a Clostridium thermocellum mini-cellulosome.
J Mol Biol. 2011 Apr 8;407(4):571-80. doi: 10.1016/j.jmb.2011.01.060. Epub 2011 Feb 15.
2
Modeling the self-assembly of the cellulosome enzyme complex.
J Biol Chem. 2011 Feb 18;286(7):5614-23. doi: 10.1074/jbc.M110.186031. Epub 2010 Nov 22.
3
Synergy, structure and conformational flexibility of hybrid cellulosomes displaying various inter-cohesins linkers.
J Mol Biol. 2011 Jan 7;405(1):143-57. doi: 10.1016/j.jmb.2010.10.013. Epub 2010 Oct 21.
4
Modular arrangement of a cellulosomal scaffoldin subunit revealed from the crystal structure of a cohesin dyad.
J Mol Biol. 2010 Jun 4;399(2):294-305. doi: 10.1016/j.jmb.2010.04.013. Epub 2010 Apr 13.
5
Cellulosomes: highly efficient nanomachines designed to deconstruct plant cell wall complex carbohydrates.
Annu Rev Biochem. 2010;79:655-81. doi: 10.1146/annurev-biochem-091208-085603.
6
Purification and crystallization of a multimodular heterotrimeric complex containing both type I and type II cohesin-dockerin interactions from the cellulosome of Clostridium thermocellum.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2010 Mar 1;66(Pt 3):327-9. doi: 10.1107/S1744309110001375. Epub 2010 Feb 25.
7
PHENIX: a comprehensive Python-based system for macromolecular structure solution.
Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):213-21. doi: 10.1107/S0907444909052925. Epub 2010 Jan 22.
9
MolProbity: all-atom structure validation for macromolecular crystallography.
Acta Crystallogr D Biol Crystallogr. 2010 Jan;66(Pt 1):12-21. doi: 10.1107/S0907444909042073. Epub 2009 Dec 21.
10
Structure and flexibility within proteins as identified through small angle X-ray scattering.
Gen Physiol Biophys. 2009 Jun;28(2):174-89. doi: 10.4149/gpb_2009_02_174.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验