Electrophysiology Research Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA.
J Neurosci. 2010 Jan 13;30(2):545-55. doi: 10.1523/JNEUROSCI.4920-09.2010.
Marijuana is a widely used drug that impairs memory through interaction between its psychoactive constituent, Delta-9-tetrahydrocannabinol (Delta(9)-THC), and CB(1) receptors (CB1Rs) in the hippocampus. CB1Rs are located on Schaffer collateral (Sc) axon terminals in the hippocampus, where they inhibit glutamate release onto CA1 pyramidal neurons. This action is shared by adenosine A(1) receptors (A1Rs), which are also located on Sc terminals. Furthermore, A1Rs are tonically activated by endogenous adenosine (eADO), leading to suppressed glutamate release under basal conditions. Colocalization of A1Rs and CB1Rs, and their coupling to shared components of signal transduction, suggest that these receptors may interact. We examined the roles of A1Rs and eADO in regulating CB1R inhibition of glutamatergic synaptic transmission in the rodent hippocampus. We found that A1R activation by basal or experimentally increased levels of eADO reduced or eliminated CB1R inhibition of glutamate release, and that blockade of A1Rs with caffeine or other antagonists reversed this effect. The CB1R-A1R interaction was observed with the agonists WIN55,212-2 and Delta(9)-THC and during endocannabinoid-mediated depolarization-induced suppression of excitation. A1R control of CB1Rs was stronger in the C57BL/6J mouse hippocampus, in which eADO levels were higher than in Sprague Dawley rats, and the eADO modulation of CB1R effects was absent in A1R knock-out mice. Since eADO levels and A1R activation are regulated by homeostatic, metabolic, and pathological factors, these data identify a mechanism in which CB1R function can be controlled by the brain adenosine system. Additionally, our data imply that caffeine may potentiate the effects of marijuana on hippocampal function.
大麻是一种广泛使用的药物,其精神活性成分 Delta-9-四氢大麻酚(Delta(9)-THC)与海马体中的 CB(1) 受体(CB1Rs)相互作用会损害记忆。CB1Rs 位于海马体中的 Schaffer 侧枝(Sc)轴突末梢,在那里它们抑制谷氨酸释放到 CA1 锥体神经元上。这种作用也被位于 Sc 末梢的腺苷 A(1) 受体(A1Rs)共享,A1Rs 还被内源性腺苷(eADO)持续激活,导致在基础条件下谷氨酸释放受到抑制。A1Rs 和 CB1Rs 的共定位及其信号转导的共享成分的偶联表明,这些受体可能相互作用。我们研究了 A1Rs 和 eADO 在调节大麻素受体抑制谷氨酸能突触传递中的作用在啮齿动物海马体中。我们发现,基础或实验性增加的 eADO 激活 A1R 会减少或消除 CB1R 对谷氨酸释放的抑制,并且用咖啡因或其他拮抗剂阻断 A1R 会逆转这种作用。这种 CB1R-A1R 相互作用在激动剂 WIN55,212-2 和 Delta(9)-THC 以及内源性大麻素介导的去极化诱导的兴奋抑制期间都有观察到。在 C57BL/6J 小鼠海马体中观察到 A1R 对 CB1Rs 的控制作用更强,其中 eADO 水平高于 Sprague Dawley 大鼠,并且在 A1R 敲除小鼠中不存在 eADO 对 CB1R 作用的调节。由于 eADO 水平和 A1R 激活受稳态、代谢和病理因素的调节,这些数据确定了一种机制,其中 CB1R 功能可以被大脑腺苷系统控制。此外,我们的数据表明,咖啡因可能增强大麻对海马体功能的影响。