Suppr超能文献

利用 SNAP 标签融合蛋白的活细胞受激发射损耗纳米显微镜技术。

Stimulated emission depletion nanoscopy of living cells using SNAP-tag fusion proteins.

机构信息

Max Planck Institute for Biophysical Chemistry, Department of NanoBiophotonics, Göttingen, Germany.

出版信息

Biophys J. 2010 Jan 6;98(1):158-63. doi: 10.1016/j.bpj.2009.09.053.

Abstract

We show far-field fluorescence nanoscopy of different structural elements labeled with an organic dye within living mammalian cells. The diffraction barrier limiting far-field light microscopy is outperformed by using stimulated emission depletion. We used the tagging protein hAGT (SNAP-tag), which covalently binds benzylguanine-substituted organic dyes, for labeling. Tetramethylrhodamine was used to image the cytoskeleton (vimentin and microtubule-associated protein 2) as well as structures located at the cell membrane (caveolin and connexin-43) with a resolution down to 40 nm. Comparison with structures labeled with the yellow fluorescent protein Citrine validates this labeling approach. Nanoscopic movies showing the movement of connexin-43 clusters across the cell membrane evidence the capability of this technique to observe structural changes on the nanoscale over time. Pulsed or continuous-wave lasers for excitation and stimulated emission depletion yield images of similar resolution in living cells. Hence fusion proteins that bind modified organic dyes expand widely the application range of far-field fluorescence nanoscopy of living cells.

摘要

我们展示了利用受激辐射损耗技术对活哺乳动物细胞内不同结构元素进行远场荧光纳米显微镜观察的结果。该技术克服了远场光显微镜的衍射限制。我们使用了标记蛋白 hAGT(SNAP 标签),它可以与苯甲基鸟嘌呤取代的有机染料共价结合进行标记。四甲基罗丹明用于对细胞骨架(波形蛋白和微管相关蛋白 2)以及细胞膜上的结构(质膜窖蛋白和连接蛋白 43)进行成像,分辨率可达 40nm。与用黄色荧光蛋白 Citrine 标记的结构进行比较,验证了这种标记方法的有效性。显示质膜上连接蛋白 43 簇跨膜运动的纳米级电影证明了该技术能够在时间尺度上观察纳米尺度的结构变化。用于激发和受激辐射损耗的脉冲或连续波激光可在活细胞中获得类似分辨率的图像。因此,结合修饰有机染料的融合蛋白极大地扩展了活细胞远场荧光纳米显微镜的应用范围。

相似文献

1
Stimulated emission depletion nanoscopy of living cells using SNAP-tag fusion proteins.
Biophys J. 2010 Jan 6;98(1):158-63. doi: 10.1016/j.bpj.2009.09.053.
2
Labeling Strategies Matter for Super-Resolution Microscopy: A Comparison between HaloTags and SNAP-tags.
Cell Chem Biol. 2019 Apr 18;26(4):584-592.e6. doi: 10.1016/j.chembiol.2019.01.003. Epub 2019 Feb 7.
4
MRT letter: Nanoscopy of protein colocalization in living cells by STED and GSDIM.
Microsc Res Tech. 2012 Jan;75(1):1-6. doi: 10.1002/jemt.21026. Epub 2011 Jun 15.
6
Toward fluorescence nanoscopy.
Nat Biotechnol. 2003 Nov;21(11):1347-55. doi: 10.1038/nbt895.
7
Nanoscopy in a living multicellular organism expressing GFP.
Biophys J. 2011 Jun 22;100(12):L63-5. doi: 10.1016/j.bpj.2011.05.020.
8
Stimulated emission depletion (STED) nanoscopy of a fluorescent protein-labeled organelle inside a living cell.
Proc Natl Acad Sci U S A. 2008 Sep 23;105(38):14271-6. doi: 10.1073/pnas.0807705105. Epub 2008 Sep 16.

引用本文的文献

1
Gentle Rhodamines for Live-Cell Fluorescence Microscopy.
ACS Cent Sci. 2024 Oct 2;10(10):1933-1944. doi: 10.1021/acscentsci.4c00616. eCollection 2024 Oct 23.
2
Super-resolution STED imaging in the inner and outer whole-mount mouse retina.
Front Ophthalmol (Lausanne). 2023 Apr 6;3:1126338. doi: 10.3389/fopht.2023.1126338. eCollection 2023.
3
Studying structure and functions of cell membranes by single molecule biophysical techniques.
Biophys Rep. 2021 Oct 31;7(5):384-398. doi: 10.52601/bpr.2021.210018.
4
super-resolution of the brain - How to visualize the hidden nanoplasticity?
iScience. 2022 Aug 17;25(9):104961. doi: 10.1016/j.isci.2022.104961. eCollection 2022 Sep 16.
5
Dynamic distortion in resonant galvanometric optical scanners.
Optica. 2020 Nov;7(11):1506-1513. doi: 10.1364/optica.405187. Epub 2020 Oct 27.
8
Bridging the gap: Super-resolution microscopy of epithelial cell junctions.
Tissue Barriers. 2018 Jan 2;6(1):e1404189. doi: 10.1080/21688370.2017.1404189. Epub 2018 Feb 8.
9
Advanced fluorescence microscopy techniques for the life sciences.
Glob Cardiol Sci Pract. 2016 Jun 30;2016(2):e201616. doi: 10.21542/gcsp.2016.16.
10
Progress in the Correlative Atomic Force Microscopy and Optical Microscopy.
Sensors (Basel). 2017 Apr 24;17(4):938. doi: 10.3390/s17040938.

本文引用的文献

1
Nano-imaging with Storm.
Nat Photonics. 2009;3(7):365-367. doi: 10.1038/nphoton.2009.101.
3
Fluorescent probes for super-resolution imaging in living cells.
Nat Rev Mol Cell Biol. 2008 Dec;9(12):929-43. doi: 10.1038/nrm2531. Epub 2008 Nov 12.
4
Stimulated emission depletion (STED) nanoscopy of a fluorescent protein-labeled organelle inside a living cell.
Proc Natl Acad Sci U S A. 2008 Sep 23;105(38):14271-6. doi: 10.1073/pnas.0807705105. Epub 2008 Sep 16.
5
HaloTag: a novel protein labeling technology for cell imaging and protein analysis.
ACS Chem Biol. 2008 Jun 20;3(6):373-82. doi: 10.1021/cb800025k.
6
Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics.
Nat Methods. 2008 May;5(5):417-23. doi: 10.1038/nmeth.1202. Epub 2008 Apr 13.
7
Video-rate far-field optical nanoscopy dissects synaptic vesicle movement.
Science. 2008 Apr 11;320(5873):246-9. doi: 10.1126/science.1154228. Epub 2008 Feb 21.
8
Intermediate filament assembly: dynamics to disease.
Trends Cell Biol. 2008 Jan;18(1):28-37. doi: 10.1016/j.tcb.2007.11.004.
9
STED microscopy with continuous wave beams.
Nat Methods. 2007 Nov;4(11):915-8. doi: 10.1038/nmeth1108. Epub 2007 Oct 21.
10
Far-field optical nanoscopy.
Science. 2007 May 25;316(5828):1153-8. doi: 10.1126/science.1137395.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验