Max Planck Institute for Biophysical Chemistry, Department of NanoBiophotonics, Göttingen, Germany.
Biophys J. 2010 Jan 6;98(1):158-63. doi: 10.1016/j.bpj.2009.09.053.
We show far-field fluorescence nanoscopy of different structural elements labeled with an organic dye within living mammalian cells. The diffraction barrier limiting far-field light microscopy is outperformed by using stimulated emission depletion. We used the tagging protein hAGT (SNAP-tag), which covalently binds benzylguanine-substituted organic dyes, for labeling. Tetramethylrhodamine was used to image the cytoskeleton (vimentin and microtubule-associated protein 2) as well as structures located at the cell membrane (caveolin and connexin-43) with a resolution down to 40 nm. Comparison with structures labeled with the yellow fluorescent protein Citrine validates this labeling approach. Nanoscopic movies showing the movement of connexin-43 clusters across the cell membrane evidence the capability of this technique to observe structural changes on the nanoscale over time. Pulsed or continuous-wave lasers for excitation and stimulated emission depletion yield images of similar resolution in living cells. Hence fusion proteins that bind modified organic dyes expand widely the application range of far-field fluorescence nanoscopy of living cells.
我们展示了利用受激辐射损耗技术对活哺乳动物细胞内不同结构元素进行远场荧光纳米显微镜观察的结果。该技术克服了远场光显微镜的衍射限制。我们使用了标记蛋白 hAGT(SNAP 标签),它可以与苯甲基鸟嘌呤取代的有机染料共价结合进行标记。四甲基罗丹明用于对细胞骨架(波形蛋白和微管相关蛋白 2)以及细胞膜上的结构(质膜窖蛋白和连接蛋白 43)进行成像,分辨率可达 40nm。与用黄色荧光蛋白 Citrine 标记的结构进行比较,验证了这种标记方法的有效性。显示质膜上连接蛋白 43 簇跨膜运动的纳米级电影证明了该技术能够在时间尺度上观察纳米尺度的结构变化。用于激发和受激辐射损耗的脉冲或连续波激光可在活细胞中获得类似分辨率的图像。因此,结合修饰有机染料的融合蛋白极大地扩展了活细胞远场荧光纳米显微镜的应用范围。