Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy.
Bioresour Technol. 2010 May;101(9):3085-90. doi: 10.1016/j.biortech.2009.12.077. Epub 2010 Jan 13.
This study describes the performance of a microbial biocathode, based on a hydrogenophilic methanogenic culture, capable of reducing carbon dioxide to methane, at high rates (up to 0.055 + or - 0.002 mmol d(-1) mgVSS(-1)) and electron capture efficiencies (over 80%). Methane was produced, at potentials more negative than -650 mV vs. SHE, both via abiotically produced hydrogen gas (i.e., via hydrogenophilic methanogenesis) and via direct extracellular electron transfer. The relative contribution of these two mechanisms was highly dependent on the set cathode potential. Both cyclic voltammetry tests and batch potentiostatic experiments indicated that the capacity for extracellular electron transfer was a constitutive trait of the hydrogenophilic methanogenic culture. In principle, both electrons and carbon dioxide required for methane production could be obtained from a bioanode carrying out the oxidation of waste organic substrates.
本研究描述了一种基于嗜氢产甲烷培养物的微生物生物阴极的性能,该阴极能够以较高的速率(高达 0.055 ± 0.002 mmol d(-1) mgVSS(-1))和电子捕获效率(超过 80%)将二氧化碳还原为甲烷。在相对于 SHE 为负 650 mV 以下的电势下,通过生物生成的氢气(即通过嗜氢产甲烷作用)和通过直接细胞外电子转移都产生了甲烷。这两种机制的相对贡献高度依赖于设定的阴极电势。循环伏安测试和间歇恒电位实验均表明,细胞外电子转移的能力是嗜氢产甲烷培养物的固有特性。原则上,甲烷生产所需的电子和二氧化碳都可以从进行废有机底物氧化的生物阳极获得。