Suppr超能文献

将磁共振成像、正电子发射断层扫描和脑脊液生物标志物相结合,用于阿尔茨海默病的诊断和预后。

Combining MR imaging, positron-emission tomography, and CSF biomarkers in the diagnosis and prognosis of Alzheimer disease.

机构信息

Department of Psychology, CSHC, University of Oslo, Oslo, Norway.

出版信息

AJNR Am J Neuroradiol. 2010 Feb;31(2):347-54. doi: 10.3174/ajnr.A1809. Epub 2010 Jan 14.

Abstract

BACKGROUND AND PURPOSE

Different biomarkers for AD may potentially be complementary in diagnosis and prognosis of AD. Our aim was to combine MR imaging, FDG-PET, and CSF biomarkers in the diagnostic classification and 2-year prognosis of MCI and AD, by examining the following: 1) which measures are most sensitive to diagnostic status, 2) to what extent the methods provide unique information in diagnostic classification, and 3) which measures are most predictive of clinical decline.

MATERIALS AND METHODS

ADNI baseline MR imaging, FDG-PET, and CSF data from 42 controls, 73 patients with MCI, and 38 patients with AD; and 2-year clinical follow-up data for 36 controls, 51 patients with MCI, and 25 patients with AD were analyzed. The hippocampus and entorhinal, parahippocampal, retrosplenial, precuneus, inferior parietal, supramarginal, middle temporal, lateral, and medial orbitofrontal cortices were used as regions of interest. CSF variables included Abeta42, t-tau, p-tau, and ratios of t-tau/Abeta42 and p-tau/Abeta42. Regression analyses were performed to determine the sensitivity of measures to diagnostic status as well as 2-year change in CDR-SB, MMSE, and delayed logical memory in MCI.

RESULTS

Hippocampal volume, retrosplenial thickness, and t-tau/Abeta42 uniquely predicted diagnostic group. Change in CDR-SB was best predicted by retrosplenial thickness; MMSE, by retrosplenial metabolism and thickness; and delayed logical memory, by hippocampal volume.

CONCLUSIONS

All biomarkers were sensitive to the diagnostic group. Combining MR imaging morphometry and CSF biomarkers improved diagnostic classification (controls versus AD). MR imaging morphometry and PET were largely overlapping in value for discrimination. Baseline MR imaging and PET measures were more predictive of clinical change in MCI than were CSF measures.

摘要

背景与目的

不同的 AD 生物标志物在 AD 的诊断和预后中可能具有互补作用。我们的目的是通过检查以下内容,将 MRI、FDG-PET 和 CSF 生物标志物结合起来,用于 MCI 和 AD 的诊断分类和 2 年预后:1)哪些指标对诊断状态最敏感,2)这些方法在诊断分类中提供了多少独特的信息,3)哪些指标对临床衰退最具预测性。

材料和方法

对 42 名对照者、73 名 MCI 患者和 38 名 AD 患者的 ADNI 基线 MRI、FDG-PET 和 CSF 数据以及 36 名对照者、51 名 MCI 患者和 25 名 AD 患者的 2 年临床随访数据进行了分析。海马体和内嗅皮质、海马旁回、后扣带回、楔前叶、下顶叶、缘上回、颞中回、外侧和内侧眶额皮质被用作感兴趣区。CSF 变量包括 Abeta42、t-tau、p-tau 以及 t-tau/Abeta42 和 p-tau/Abeta42 的比值。进行回归分析以确定各指标对诊断状态的敏感性以及 MCI 中 CDR-SB、MMSE 和延迟逻辑记忆的 2 年变化。

结果

海马体体积、后扣带回厚度和 t-tau/Abeta42 可独特预测诊断组。CDR-SB 的变化主要由后扣带回厚度预测;MMSE 由后扣带回代谢和厚度预测;而延迟逻辑记忆由海马体体积预测。

结论

所有生物标志物均对诊断组敏感。将 MRI 形态计量学和 CSF 生物标志物相结合可改善诊断分类(对照组与 AD)。MRI 形态计量学和 PET 在区分方面具有很大的重叠价值。与 CSF 测量值相比,基线 MRI 和 PET 测量值对 MCI 患者的临床变化更具预测性。

相似文献

1
Combining MR imaging, positron-emission tomography, and CSF biomarkers in the diagnosis and prognosis of Alzheimer disease.
AJNR Am J Neuroradiol. 2010 Feb;31(2):347-54. doi: 10.3174/ajnr.A1809. Epub 2010 Jan 14.
2
FDG-PET and CSF biomarker accuracy in prediction of conversion to different dementias in a large multicentre MCI cohort.
Neuroimage Clin. 2018 Jan 28;18:167-177. doi: 10.1016/j.nicl.2018.01.019. eCollection 2018.
5
Association of short-term cognitive decline and MCI-to-AD dementia conversion with CSF, MRI, amyloid- and F-FDG-PET imaging.
Neuroimage Clin. 2019;22:101771. doi: 10.1016/j.nicl.2019.101771. Epub 2019 Mar 13.
7
Reciprocal Predictive Relationships between Amyloid and Tau Biomarkers in Alzheimer's Disease Progression: An Empirical Model.
J Neurosci. 2019 Sep 11;39(37):7428-7437. doi: 10.1523/JNEUROSCI.1056-19.2019. Epub 2019 Jul 26.
8
CSF biomarkers and amyloid PET: concordance and diagnostic accuracy in a MCI cohort.
Acta Neurol Belg. 2019 Sep;119(3):445-452. doi: 10.1007/s13760-019-01112-8. Epub 2019 Mar 7.
9
CSF biomarkers and incipient Alzheimer disease in patients with mild cognitive impairment.
JAMA. 2009 Jul 22;302(4):385-93. doi: 10.1001/jama.2009.1064.
10
Biomarkers in subtypes of mild cognitive impairment and subjective cognitive decline.
Brain Behav. 2017 Jul 28;7(9):e00776. doi: 10.1002/brb3.776. eCollection 2017 Sep.

引用本文的文献

1
Unraveling the Mysteries of Alzheimer's Disease Using Artificial Intelligence.
Rev Recent Clin Trials. 2025;20(2):124-141. doi: 10.2174/0115748871330861241030143321.
2
Individualized and Biomarker-Based Prognosis of Longitudinal Cognitive Decline in Early Symptomatic Alzheimer's Disease.
J Alzheimers Dis Rep. 2024 Sep 27;8(1):1301-1315. doi: 10.3233/ADR-240049. eCollection 2024.
4
Alteration of medial temporal lobe metabolism related to Alzheimer's disease and dementia with lewy bodies.
Alzheimers Res Ther. 2024 Apr 23;16(1):89. doi: 10.1186/s13195-024-01429-4.
6
Non-Invasive Nasal Discharge Fluid and Other Body Fluid Biomarkers in Alzheimer's Disease.
Pharmaceutics. 2022 Jul 22;14(8):1532. doi: 10.3390/pharmaceutics14081532.
9
Identifying Type 2 Diabetic Brains by Investigating Disease-Related Structural Changes in Magnetic Resonance Imaging.
Front Neurosci. 2021 Oct 26;15:728874. doi: 10.3389/fnins.2021.728874. eCollection 2021.
10
Artificial Intelligence for Alzheimer's Disease: Promise or Challenge?
Diagnostics (Basel). 2021 Aug 14;11(8):1473. doi: 10.3390/diagnostics11081473.

本文引用的文献

5
Structural MRI biomarkers for preclinical and mild Alzheimer's disease.
Hum Brain Mapp. 2009 Oct;30(10):3238-53. doi: 10.1002/hbm.20744.
6
MRI of hippocampal volume loss in early Alzheimer's disease in relation to ApoE genotype and biomarkers.
Brain. 2009 Apr;132(Pt 4):1067-77. doi: 10.1093/brain/awp007. Epub 2009 Feb 27.
9
Multimodal imaging in mild cognitive impairment: Metabolism, morphometry and diffusion of the temporal-parietal memory network.
Neuroimage. 2009 Mar 1;45(1):215-23. doi: 10.1016/j.neuroimage.2008.10.053. Epub 2008 Nov 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验