Suppr超能文献

短期和粗粒度时间序列中关键波动和相变的识别——一种实时监测人类变化过程的方法。

The identification of critical fluctuations and phase transitions in short term and coarse-grained time series-a method for the real-time monitoring of human change processes.

作者信息

Schiepek Günter, Strunk Guido

机构信息

Institute of Synergetics and Psychotherapy Research, Paracelsus Medical University, Universitätsklinikum/Christian Doppler Klinik, Ignaz Harrer Str. 79, 5020 Salzburg, Austria.

出版信息

Biol Cybern. 2010 Mar;102(3):197-207. doi: 10.1007/s00422-009-0362-1.

Abstract

We introduce two complementary measures for the identification of critical instabilities and fluctuations in natural time series: the degree of fluctuations F and the distribution parameter D. Both are valid measures even of short and coarse-grained data sets, as demonstrated by artificial data from the logistic map (Feigenbaum-Scenario). A comparison is made with the application of the positive Lyapunov exponent to time series and another recently developed complexity measure-the Permutation Entropy. The results justify the application of the measures within computer-based real-time monitoring systems of human change processes. Results from process-outcome research in psychotherapy and functional neuroimaging of psychotherapy processes are provided as examples for the practical and scientific applications of the proposed measures.

摘要

我们引入了两种互补的方法来识别自然时间序列中的关键不稳定性和波动

波动程度F和分布参数D。正如逻辑斯谛映射(费根鲍姆情景)的人工数据所表明的那样,即使对于短的和粗粒度的数据集,这两种方法都是有效的测量手段。我们将其与将正李雅普诺夫指数应用于时间序列以及另一种最近开发的复杂性度量——排列熵进行了比较。结果证明了这些方法在基于计算机的人类变化过程实时监测系统中的应用合理性。心理治疗中的过程-结果研究以及心理治疗过程的功能神经成像结果作为所提出方法的实际和科学应用示例给出。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验