Institute for Informatics, University of Zürich, 8050 Zürich, Switzerland.
Digital Society Initiative, University of Zürich, 8001 Zürich, Switzerland.
J Am Med Inform Assoc. 2024 Nov 1;31(11):2496-2506. doi: 10.1093/jamia/ocae230.
This article describes the design and evaluation of MS Pattern Explorer, a novel visual tool that uses interactive machine learning to analyze fitness wearables' data. Applied to a clinical study of multiple sclerosis (MS) patients, the tool addresses key challenges: managing activity signals, accelerating insight generation, and rapidly contextualizing identified patterns. By analyzing sensor measurements, it aims to enhance understanding of MS symptomatology and improve the broader problem of clinical exploratory sensor data analysis.
Following a user-centered design approach, we learned that clinicians have 3 priorities for generating insights for the Barka-MS study data: exploration and search for, and contextualization of, sequences and patterns in patient sleep and activity. We compute meaningful sequences for patients using clustering and proximity search, displaying these with an interactive visual interface composed of coordinated views. Our evaluation posed both closed and open-ended tasks to participants, utilizing a scoring system to gauge the tool's usability, and effectiveness in supporting insight generation across 15 clinicians, data scientists, and non-experts.
We present MS Pattern Explorer, a visual analytics system that helps clinicians better address complex data-centric challenges by facilitating the understanding of activity patterns. It enables innovative analysis that leads to rapid insight generation and contextualization of temporal activity data, both within and between patients of a cohort. Our evaluation results indicate consistent performance across participant groups and effective support for insight generation in MS patient fitness tracker data. Our implementation offers broad applicability in clinical research, allowing for potential expansion into cohort-wide comparisons or studies of other chronic conditions.
MS Pattern Explorer successfully reduces the signal overload clinicians currently experience with activity data, introducing novel opportunities for data exploration, sense-making, and hypothesis generation.
本文描述了 MS 模式探索者的设计和评估,这是一种新颖的可视化工具,使用交互式机器学习分析健身可穿戴设备的数据。应用于多发性硬化症 (MS) 患者的临床研究,该工具解决了关键挑战:管理活动信号、加速洞察力的产生以及快速上下文化确定的模式。通过分析传感器测量值,旨在增强对 MS 症状学的理解,并改善更广泛的临床探索性传感器数据分析问题。
我们采用以用户为中心的设计方法,了解到临床医生在为 Barka-MS 研究数据生成见解时有 3 个优先级:探索和搜索患者睡眠和活动中的序列和模式,并对其进行上下文处理。我们使用聚类和接近度搜索为患者计算有意义的序列,并使用由协调视图组成的交互式视觉界面显示这些序列。我们的评估向参与者提出了封闭和开放式任务,利用评分系统来衡量工具的可用性以及在 15 位临床医生、数据科学家和非专家中支持洞察力生成的有效性。
我们展示了 MS 模式探索者,这是一种可视化分析系统,通过促进对活动模式的理解,帮助临床医生更好地应对以数据为中心的复杂挑战。它支持创新分析,可快速生成洞察力,并对队列内和队列间患者的时间活动数据进行上下文处理。我们的评估结果表明,各参与组的表现一致,并有效支持 MS 患者健身追踪器数据的洞察力生成。我们的实现具有广泛的临床研究适用性,允许扩展到队列范围的比较或其他慢性疾病的研究。
MS 模式探索者成功减少了临床医生目前在活动数据方面面临的信号过载,为数据探索、意义构建和假设生成引入了新的机会。