Suppr超能文献

利用 ZIP 和 CART 模型研究隐孢子虫病与气候变量的关系。

The use of ZIP and CART to model cryptosporidiosis in relation to climatic variables.

机构信息

School of Mathematical Sciences, Queensland University of Technology, Kelvin Grove, Queensland, 4059, Australia.

出版信息

Int J Biometeorol. 2010 Jul;54(4):433-40. doi: 10.1007/s00484-009-0294-4. Epub 2010 Jan 19.

Abstract

This research assesses the potential impact of weekly weather variability on the incidence of cryptosporidiosis disease using time series zero-inflated Poisson (ZIP) and classification and regression tree (CART) models. Data on weather variables, notified cryptosporidiosis cases and population size in Brisbane were supplied by the Australian Bureau of Meteorology, Queensland Department of Health, and Australian Bureau of Statistics, respectively. Both time series ZIP and CART models show a clear association between weather variables (maximum temperature, relative humidity, rainfall and wind speed) and cryptosporidiosis disease. The time series CART models indicated that, when weekly maximum temperature exceeded 31 degrees C and relative humidity was less than 63%, the relative risk of cryptosporidiosis rose by 13.64 (expected morbidity: 39.4; 95% confidence interval: 30.9-47.9). These findings may have applications as a decision support tool in planning disease control and risk-management programs for cryptosporidiosis disease.

摘要

本研究使用时间序列零膨胀泊松(ZIP)和分类回归树(CART)模型评估每周天气变化对隐孢子虫病发病率的潜在影响。天气变量、通报的隐孢子虫病病例和人口规模数据分别由澳大利亚气象局、昆士兰州卫生部和澳大利亚统计局提供。时间序列 ZIP 和 CART 模型都表明天气变量(最高温度、相对湿度、降雨量和风速)与隐孢子虫病之间存在明显关联。时间序列 CART 模型表明,当每周最高温度超过 31 摄氏度且相对湿度低于 63%时,隐孢子虫病的相对风险增加 13.64(预期发病率:39.4;95%置信区间:30.9-47.9)。这些发现可作为规划隐孢子虫病控制和风险管理计划的决策支持工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验