Suppr超能文献

促进经处理的碳纳米管上 NADH 的电氧化。

Facilitation of NADH electro-oxidation at treated carbon nanotubes.

机构信息

Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249-0698, USA.

出版信息

Anal Chem. 2010 Feb 15;82(4):1299-304. doi: 10.1021/ac902301b.

Abstract

The relationship between the state of the surface of carbon nanotubes (CNTs) and their electrochemical activity was investigated using the enzyme cofactor dihydronicotinamide adenine dinucleotide (NADH) as a redox probe. The boiling of CNTs in water, while nondestructive, activated them toward the oxidation of NADH, as indicated by a shift in the anodic peak potential of NADH (E(NADH)) from 0.4 V to 0.0 V. The shift in E(NADH) was due to the redox mediation of NADH oxidation by traces of quinone species that were formed on the surface of treated CNTs. The harsher treatment that was comprised of microwaving CNTs in concentrated nitric acid had a similar effect on the E(NADH), and, additionally, it increased the anodic peak current of NADH. The latter correlated with the formation of defects on the surface of acid-microwaved CNTs, as indicated by their Raman spectra. The increase in current was discussed, considering the role of surface mediators on the buckled graphene sheets of acid-microwaved CNTs. The other carbon allotropes, including the edge-plane pyrolytic graphite, graphite powder, and glassy carbon, did not display a comparable activation toward the oxidation of NADH.

摘要

采用酶辅因子二氢烟酰胺腺嘌呤二核苷酸(NADH)作为氧化还原探针,研究了碳纳米管(CNTs)表面状态与其电化学活性之间的关系。CNTs 在水中煮沸虽然不会造成破坏,但会使其对 NADH 的氧化具有活性,这表现为 NADH 的阳极峰电位(E(NADH))从 0.4 V 向 0.0 V 发生偏移。E(NADH)发生偏移是由于处理后的 CNTs 表面形成的痕量醌类物质对 NADH 氧化的氧化还原介导作用。更为剧烈的处理方法是将 CNTs 在浓硝酸中进行微波处理,这对 E(NADH)也有类似的影响,并且还增加了 NADH 的阳极峰电流。后者与酸微波处理的 CNTs 表面缺陷的形成有关,这可以从它们的拉曼光谱中看出。电流的增加与酸微波处理的 CNTs 的褶皱石墨烯片表面上的表面介体的作用有关。其他碳同素异形体,包括边缘平面热解石墨、石墨粉末和玻璃碳,对 NADH 的氧化没有表现出类似的活性。

相似文献

1
Facilitation of NADH electro-oxidation at treated carbon nanotubes.
Anal Chem. 2010 Feb 15;82(4):1299-304. doi: 10.1021/ac902301b.
2
Electrochemical oxidation of dihydronicotinamide adenine dinucleotide at nitrogen-doped carbon nanotube electrodes.
Anal Chem. 2013 Oct 1;85(19):9135-41. doi: 10.1021/ac401784b. Epub 2013 Sep 17.
3
The significant role of carboxylated carbonaceous fragments in the electrochemistry of carbon nanotubes.
Chemistry. 2014 Apr 1;20(14):4072-6. doi: 10.1002/chem.201304311. Epub 2014 Feb 24.
7
Electrocatalytic oxidation of NADH with Meldola's blue functionalized carbon nanotubes electrodes.
Biosens Bioelectron. 2007 May 15;22(11):2768-73. doi: 10.1016/j.bios.2006.12.027. Epub 2007 Jan 5.
10
Eco-synthesis of graphene and its use in dihydronicotinamide adenine dinucleotide sensing.
Anal Biochem. 2014 Sep 1;460:29-35. doi: 10.1016/j.ab.2014.05.002. Epub 2014 May 15.

引用本文的文献

1
Quantification of Myoinositol in Serum by Electrochemical Detection with an Unmodified Screen-Printed Carbon Electrode.
J Anal Methods Chem. 2022 Mar 29;2022:3998338. doi: 10.1155/2022/3998338. eCollection 2022.
5
Hormone glucagon: electrooxidation and determination at carbon nanotubes.
Analyst. 2016 Apr 21;141(8):2405-11. doi: 10.1039/c5an02636a. Epub 2016 Mar 3.
6
On the direct electron transfer, sensing, and enzyme activity in the glucose oxidase/carbon nanotubes system.
Anal Chem. 2014 Jan 7;86(1):752-7. doi: 10.1021/ac403250w. Epub 2013 Dec 4.
7
Adsorption of Glucose Oxidase to 3-D Scaffolds of Carbon Nanotubes: Analytical Applications.
Electroanalysis. 2011 Jun 1;23(6):1462-1469. doi: 10.1002/elan.201000758. Epub 2011 May 12.
8
Nanomolar Detection of Glutamate at a Biosensor Based on Screen-Printed Electrodes Modified with Carbon Nanotubes.
Electroanalysis. 2011 Oct;23(10):2357-2363. doi: 10.1002/elan.201100348. Epub 2011 Sep 20.
10
Recent applications of carbon-based nanomaterials in analytical chemistry: critical review.
Anal Chim Acta. 2011 Apr 8;691(1-2):6-17. doi: 10.1016/j.aca.2011.02.025. Epub 2011 Feb 16.

本文引用的文献

1
Effect of Purity and Substrate on Field Emission Properties of Multi-walled Carbon Nanotubes.
Nanoscale Res Lett. 2007 Jun 21;2(7):331-6. doi: 10.1007/s11671-007-9067-3.
2
Carbon nanotube-ionic liquid composite sensors and biosensors.
Anal Chem. 2009 Jan 1;81(1):435-42. doi: 10.1021/ac801853r.
3
Electrochemical activation of carbon nanotube/polymer composites.
Phys Chem Chem Phys. 2009 Jan 7;11(1):182-6. doi: 10.1039/b814599g. Epub 2008 Nov 6.
5
Advanced carbon electrode materials for molecular electrochemistry.
Chem Rev. 2008 Jul;108(7):2646-87. doi: 10.1021/cr068076m. Epub 2008 Jun 17.
6
Electrochemistry at carbon nanotube electrodes: is the nanotube tip more active than the sidewall?
Angew Chem Int Ed Engl. 2008;47(29):5446-50. doi: 10.1002/anie.200801744.
7
Highly ordered mesoporous carbons as electrode material for the construction of electrochemical dehydrogenase- and oxidase-based biosensors.
Biosens Bioelectron. 2008 Nov 15;24(3):442-7. doi: 10.1016/j.bios.2008.04.025. Epub 2008 May 4.
8
Coimmobilization of dehydrogenases and their cofactors in electrochemical biosensors.
Anal Chem. 2007 Mar 15;79(6):2446-50. doi: 10.1021/ac061698n. Epub 2007 Feb 14.
9
Functionalization of multiwalled carbon nanotubes by mild aqueous sonication.
J Phys Chem B. 2005 Apr 28;109(16):7788-94. doi: 10.1021/jp045147h.
10
Rapidly functionalized, water-dispersed carbon nanotubes at high concentration.
J Am Chem Soc. 2006 Jan 11;128(1):95-9. doi: 10.1021/ja053003q.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验