INRA, UMR077 PAVE, F-49071 Beaucouzé, France.
Mol Ecol. 2010 Feb;19(4):658-74. doi: 10.1111/j.1365-294X.2009.04498.x. Epub 2010 Jan 18.
Evaluating the impact of plant domestication on the population structure of the associated pathogens provides an opportunity to increase our understanding of how and why diseases emerge. Here, we investigated the evolution of the population structure of the apple scab fungus Venturia inaequalis in response to the domestication of its host. Inferences were drawn from multilocus microsatellite data obtained from samples collected on (i) the Central Asian Malus sieversii, the main progenitor of apple, (ii) the European crabapple, Malus sylvestris, a secondary progenitor of apple, and (iii) the cultivated apple, Malus x domestica, in orchards from Europe and Central Asia. Using clustering methods, we identified three distinct populations: (i) a large European population on domesticated and wild apples, (ii) a large Central Asian population on domesticated and wild apples in urban and agricultural areas, and (iii) a more geographically restricted population in M. sieversii forests growing in the eastern mountains of Kazakhstan. Unique allele richness and divergence time estimates supported a host-tracking co-evolutionary scenario in which this latter population represents a relict of the ancestral populations from which current populations found in human-managed habitats were derived. Our analyses indicated that the domestication of apple induced a significant change in the genetic differentiation of populations of V. inaequalis in its centre of origin, but had little impact on its population dynamics and mating system. We discuss how the structure of the apple-based agrosystem may have restricted changes in the population structure of the fungus in response to the domestication of its host.
评估植物驯化对相关病原体种群结构的影响,为我们提供了一个机会,可以增进我们对疾病是如何以及为何出现的理解。在这里,我们研究了苹果黑星病菌(Venturia inaequalis)种群结构的演变,以响应其宿主的驯化。我们从在中亚苹果(Malus sieversii)、苹果的主要祖先、欧洲野苹果(Malus sylvestris)、苹果的次要祖先和栽培苹果(Malus x domestica)上采集的样本中获得了多基因微卫星数据,并据此进行推断,这些样本分别来自欧洲和中亚的果园。利用聚类方法,我们确定了三个不同的种群:(i)在驯化和野生苹果上的大型欧洲种群,(ii)在城市和农业地区的驯化和野生苹果上的大型中亚种群,以及(iii)在哈萨克斯坦东部山区生长的 M. sieversii 森林中具有更具地理限制的种群。独特等位基因丰富度和分歧时间估计支持了一个宿主跟踪的协同进化情景,其中后者代表了当前在人类管理的栖息地中发现的种群的祖先种群的残余。我们的分析表明,苹果的驯化导致了其起源中心的 V. inaequalis 种群遗传分化的显著变化,但对其种群动态和交配系统几乎没有影响。我们讨论了苹果农业系统的结构如何限制了真菌种群结构的变化,以响应其宿主的驯化。