Mayo Clinic, Scottsdale, AZ 85259, USA.
BMC Bioinformatics. 2010 Jan 20;11:41. doi: 10.1186/1471-2105-11-41.
The binding of peptide fragments of extracellular peptides to class II MHC is a crucial event in the adaptive immune response. Each MHC allotype generally binds a distinct subset of peptides and the enormous number of possible peptide epitopes prevents their complete experimental characterization. Computational methods can utilize the limited experimental data to predict the binding affinities of peptides to class II MHC.
We have developed the Regularized Thermodynamic Average, or RTA, method for predicting the affinities of peptides binding to class II MHC. RTA accounts for all possible peptide binding conformations using a thermodynamic average and includes a parameter constraint for regularization to improve accuracy on novel data. RTA was shown to achieve higher accuracy, as measured by AUC, than SMM-align on the same data for all 17 MHC allotypes examined. RTA also gave the highest accuracy on all but three allotypes when compared with results from 9 different prediction methods applied to the same data. In addition, the method correctly predicted the peptide binding register of 17 out of 18 peptide-MHC complexes. Finally, we found that suboptimal peptide binding registers, which are often ignored in other prediction methods, made significant contributions of at least 50% of the total binding energy for approximately 20% of the peptides.
The RTA method accurately predicts peptide binding affinities to class II MHC and accounts for multiple peptide binding registers while reducing overfitting through regularization. The method has potential applications in vaccine design and in understanding autoimmune disorders. A web server implementing the RTA prediction method is available at http://bordnerlab.org/RTA/.
细胞外肽片段与 II 类 MHC 的结合是适应性免疫反应中的关键事件。每种 MHC 同种型通常结合一组独特的肽,而大量可能的肽表位阻止了它们的完全实验表征。计算方法可以利用有限的实验数据来预测肽与 II 类 MHC 的结合亲和力。
我们开发了正则化热力学平均(RTA)方法来预测肽与 II 类 MHC 结合的亲和力。RTA 使用热力学平均来考虑所有可能的肽结合构象,并包括正则化参数约束以提高对新数据的准确性。RTA 在 AUC 方面的准确性高于 SMM-align 在相同数据上的准确性,适用于所有 17 种 MHC 同种型。RTA 在与应用于相同数据的 9 种不同预测方法的结果进行比较时,除了三种同种型外,其余均具有最高的准确性。此外,该方法正确预测了 18 个肽-MHC 复合物中的 17 个肽结合寄存器。最后,我们发现,在其他预测方法中经常忽略的次优肽结合寄存器对大约 20%的肽的总结合能至少有 50%的贡献。
RTA 方法准确预测了肽与 II 类 MHC 的结合亲和力,并考虑了多个肽结合寄存器,同时通过正则化减少了过拟合。该方法在疫苗设计和理解自身免疫疾病方面具有潜在的应用。一个实现 RTA 预测方法的网络服务器可在 http://bordnerlab.org/RTA/ 获得。