School of Physical Education and Sport, University of São Paulo, Brazil.
J Strength Cond Res. 2011 Jan;25(1):225-30. doi: 10.1519/JSC.0b013e3181b2b895.
This study tested the ventilation (VE) behavior during upper-body incremental exercise by mathematical models that calculate 1 or 2 thresholds and compared the thresholds identified by mathematical models with V-slope, ventilatory equivalent for oxygen uptake (VE/V(O2)), and ventilatory equivalent for carbon dioxide uptake (VE/V(CO2)). Fourteen rock climbers underwent an upper-body incremental test on a cycle ergometer with increases of approximately 20 W · min(-1) until exhaustion at a cranking frequency of approximately 90 rpm. The VE data were smoothed to 10-second averages for VE time plotting. The bisegmental and the 3-segmental linear regression models were calculated from 1 or 2 intercepts that best shared the VE curve in 2 or 3 linear segments. The ventilatory threshold(s) was determined mathematically by the intercept(s) obtained by bisegmental and 3-segmental models, by V-slope model, or visually by VE/V(O2) and VE/V(CO2). There was no difference between bisegmental (mean square error [MSE] = 35.3 ± 32.7 l · min(-1)) and 3-segmental (MSE = 44.9 ± 47.8 l · min(-1)) models in fitted data. There was no difference between ventilatory threshold identified by the bisegmental (28.2 ± 6.8 ml · kg(-1) · min(-1)) and second ventilatory threshold identified by the 3-segmental (30.0 ± 5.1 ml · kg(-1) · min(-1)), VE/V(O2) (28.8 ± 5.5 ml · kg(-1) · min(-1)), or V-slope (28.5 ± 5.6 ml · kg(-1) . min(-1)). However, the first ventilatory threshold identified by 3-segmental (23.1 ± 4.9 ml · kg(-1) · min(-1)) or by VE/V(O)2 (24.9 ± 4.4 ml · kg(-1) · min(-1)) was different from these 4. The VE behavior during upper-body exercise tends to show only 1 ventilatory threshold. These findings have practical implications because this point is frequently used for aerobic training prescription in healthy subjects, athletes, and in elderly or diseased populations. The ventilatory threshold identified by VE curve should be used for aerobic training prescription in healthy subjects and athletes.
本研究通过计算 1 个或 2 个阈值的数学模型来测试上半身递增运动时的通气(VE)行为,并将数学模型识别的阈值与 V-斜率、摄氧量的通气当量(VE/V(O2))和二氧化碳摄取的通气当量(VE/V(CO2))进行比较。14 名攀岩运动员在曲柄频率约为 90rpm 的自行车测功机上进行上半身递增测试,每次增加约 20W·min(-1),直至力竭。VE 数据被平滑到 10 秒的平均值,以便进行 VE 时间绘图。双段和 3 段线性回归模型是根据 2 或 3 个线性段中最佳共享 VE 曲线的 1 个或 2 个截距计算出来的。通气阈值(s)通过双段和 3 段模型、V-斜率模型或 VE/V(O2)和 VE/V(CO2)的截距(s)数学确定,或通过视觉确定。拟合数据中,双段(均方误差 [MSE] = 35.3 ± 32.7 l·min(-1))和 3 段(MSE = 44.9 ± 47.8 l·min(-1))模型之间没有差异。双段(28.2 ± 6.8 ml·kg(-1)·min(-1))识别的通气阈值和 3 段(30.0 ± 5.1 ml·kg(-1)·min(-1))识别的第二个通气阈值之间没有差异),VE/V(O2)(28.8 ± 5.5 ml·kg(-1)·min(-1))或 V-斜率(28.5 ± 5.6 ml·kg(-1)·min(-1))。然而,3 段识别的第一个通气阈值(23.1 ± 4.9 ml·kg(-1)·min(-1))或 VE/V(O2)(24.9 ± 4.4 ml·kg(-1)·min(-1))与这 4 个不同。上半身运动时的 VE 行为往往只显示 1 个通气阈值。这些发现具有实际意义,因为这一点常用于健康受试者、运动员和老年或患病人群的有氧运动训练处方。健康受试者和运动员的有氧运动训练处方应使用 VE 曲线识别的通气阈值。