Suppr超能文献

curvHDR 方法用于门控流式细胞术样本。

The curvHDR method for gating flow cytometry samples.

机构信息

School of Mathematics and Applied Statistics, The University of New South Wales, Sydney, Australia.

出版信息

BMC Bioinformatics. 2010 Jan 22;11:44. doi: 10.1186/1471-2105-11-44.

Abstract

BACKGROUND

High-throughput flow cytometry experiments produce hundreds of large multivariate samples of cellular characteristics. These samples require specialized processing to obtain clinically meaningful measurements. A major component of this processing is a form of cell subsetting known as gating. Manual gating is time-consuming and subjective. Good automatic and semi-automatic gating algorithms are very beneficial to high-throughput flow cytometry.

RESULTS

We develop a statistical procedure, named curvHDR, for automatic and semi-automatic gating. The method combines the notions of significant high negative curvature regions and highest density regions and has the ability to adapt well to human-perceived gates. The underlying principles apply to dimension of arbitrary size, although we focus on dimensions up to three. Accompanying software, compatible with contemporary flow cytometry infor-matics, is developed.

CONCLUSION

The method is seen to adapt well to nuances in the data and, to a reasonable extent, match human perception of useful gates. It offers big savings in human labour when processing high-throughput flow cytometry data whilst retaining a good degree of efficacy.

摘要

背景

高通量流式细胞术实验产生数百个具有细胞特征的大型多元样本。这些样本需要专门的处理才能获得有临床意义的测量结果。处理过程的一个主要部分是一种称为门控的细胞亚群划分形式。手动门控既耗时又主观。好的自动和半自动门控算法对高通量流式细胞术非常有益。

结果

我们开发了一种统计程序,命名为 curvHDR,用于自动和半自动门控。该方法结合了显著高负曲率区域和最高密度区域的概念,并且能够很好地适应人为感知的门。虽然我们专注于三个维度以下的维度,但基本原理适用于任意大小的维度。开发了与当代流式细胞术信息学兼容的配套软件。

结论

该方法能够很好地适应数据中的细微差别,并在一定程度上与人类对有用门的感知相匹配。在处理高通量流式细胞术数据时,它大大节省了人工劳动,同时保持了很好的效果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验