Suppr超能文献

使用 RosettaDock 对 CAPRI 第 13-19 轮进行采样骨架构象的通用方法。

A generalized approach to sampling backbone conformations with RosettaDock for CAPRI rounds 13-19.

机构信息

Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA.

出版信息

Proteins. 2010 Nov 15;78(15):3115-23. doi: 10.1002/prot.22765.

Abstract

In CAPRI rounds 13-19, the most native-like structure predicted by RosettaDock resulted in two high, one medium, and one acceptable accuracy model out of 13 targets. The current rounds of CAPRI were especially challenging with many unbound and homology modeled starting structures. Novel docking methods, including EnsembleDock and SnugDock, allowed backbone conformational sampling during docking and enabled the creation of more accurate models. For Target 32, α-amylase/subtilisin inhibitor-subtilisin savinase, we sampled different backbone conformations at an interfacial loop to produce five high-quality models including the most accurate structure submitted in the challenge (2.1 Å ligand rmsd, 0.52 Å interface rmsd). For Target 41, colicin-immunity protein, we used EnsembleDock to sample the ensemble of nuclear magnetic resonance (NMR) models of the immunity protein to generate a medium accuracy structure. Experimental data identifying the catalytic residues at the binding interface for Target 40 (trypsin-inhibitor) were used to filter RosettaDock global rigid body docking decoys to determine high accuracy predictions for the two distinct binding sites in which the inhibitor interacts with trypsin. We discuss our generalized approach to selecting appropriate methods for different types of docking problems. The current toolset provides some robustness to errors in homology models, but significant challenges remain in accommodating larger backbone uncertainties and in sampling adequately for global searches.

摘要

在 CAPRI 第 13 至 19 轮中,RosettaDock 预测的最接近天然结构的模型在 13 个靶标中有 2 个具有高、1 个具有中、1 个具有可接受的准确性。当前轮的 CAPRI 特别具有挑战性,许多靶标是无结合和同源建模的起始结构。新的对接方法,包括 EnsembleDock 和 SnugDock,允许在对接过程中进行骨架构象采样,并能够创建更准确的模型。对于靶标 32(α-淀粉酶/枯草菌素抑制剂-枯草菌素 savinase),我们在界面环处采样不同的骨架构象,生成了包括挑战赛中提交的最准确结构在内的五个高质量模型(配体 RMSD 为 2.1 Å,界面 RMSD 为 0.52 Å)。对于靶标 41(大肠杆菌素-免疫蛋白),我们使用 EnsembleDock 来采样免疫蛋白的核磁共振(NMR)模型的集合,以生成一个中等准确性的结构。实验数据确定了靶标 40(胰蛋白酶抑制剂)结合界面的催化残基,用于过滤 RosettaDock 全局刚体对接诱饵,以确定抑制剂与胰蛋白酶相互作用的两个不同结合位点的高精度预测。我们讨论了我们选择不同类型对接问题的适当方法的一般方法。当前的工具集为同源建模中的错误提供了一些鲁棒性,但在适应更大的骨架不确定性和充分进行全局搜索方面仍存在重大挑战。

相似文献

引用本文的文献

7
Unraveling the Role of Linker Design in Proteolysis Targeting Chimeras.解析连接子设计在蛋白水解靶向嵌合体中的作用。
J Med Chem. 2021 Jun 24;64(12):8042-8052. doi: 10.1021/acs.jmedchem.1c00482. Epub 2021 Jun 9.

本文引用的文献

4
Accounting for conformational changes during protein-protein docking.考虑蛋白质-蛋白质对接过程中的构象变化。
Curr Opin Struct Biol. 2010 Apr;20(2):180-6. doi: 10.1016/j.sbi.2010.02.001. Epub 2010 Mar 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验