Suppr超能文献

使用相互作用成分模型寻找功能基因模块。

Searching for functional gene modules with interaction component models.

作者信息

Parkkinen Juuso A, Kaski Samuel

机构信息

Department of Information and Computer Science, Helsinki Institute for Information Technology HIIT and Adaptive Informatics Research Centre, Helsinki University of Technology, PO Box 5400, FI-02015 TKK, Finland.

出版信息

BMC Syst Biol. 2010 Jan 25;4:4. doi: 10.1186/1752-0509-4-4.

Abstract

BACKGROUND

Functional gene modules and protein complexes are being sought from combinations of gene expression and protein-protein interaction data with various clustering-type methods. Central features missing from most of these methods are handling of uncertainty in both protein interaction and gene expression measurements, and in particular capability of modeling overlapping clusters. It would make sense to assume that proteins may play different roles in different functional modules, and the roles are evidenced in their interactions.

RESULTS

We formulate a generative probabilistic model for protein-protein interaction links and introduce two ways for including gene expression data into the model. The model finds interaction components, which can be interpreted as overlapping clusters or functional modules. We demonstrate the performance on two data sets of yeast Saccharomyces cerevisiae. Our methods outperform a representative set of earlier models in the task of finding biologically relevant modules having enriched functional classes.

CONCLUSIONS

Combining protein interaction and gene expression data with a probabilistic generative model improves discovery of modules compared to approaches based on either data source alone. With a fairly simple model we can find biologically relevant modules better than with alternative methods, and in addition the modules may be inherently overlapping in the sense that different interactions may belong to different modules.

摘要

背景

人们正在通过各种聚类方法,从基因表达和蛋白质 - 蛋白质相互作用数据的组合中寻找功能基因模块和蛋白质复合物。大多数此类方法所缺少的核心特征是对蛋白质相互作用和基因表达测量中的不确定性的处理,特别是对重叠簇进行建模的能力。可以合理地假设,蛋白质可能在不同的功能模块中发挥不同的作用,并且这些作用在它们的相互作用中得到体现。

结果

我们为蛋白质 - 蛋白质相互作用联系制定了一个生成概率模型,并引入了两种将基因表达数据纳入该模型的方法。该模型找到相互作用组件,这些组件可以解释为重叠簇或功能模块。我们在酿酒酵母的两个数据集上展示了该模型的性能。在寻找具有丰富功能类别的生物学相关模块的任务中,我们的方法优于一组具有代表性的早期模型。

结论

与仅基于单一数据源的方法相比,将蛋白质相互作用和基因表达数据与概率生成模型相结合,能够更好地发现模块。使用一个相当简单的模型,我们能够比其他方法更好地找到生物学相关模块,此外,这些模块可能在本质上是重叠的,即不同的相互作用可能属于不同的模块。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f21/2823677/765315f69a0c/1752-0509-4-4-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验