Jiang C J, Weeds A G, Khan S, Hussey P J
School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, United Kingdom.
Proc Natl Acad Sci U S A. 1997 Sep 2;94(18):9973-8. doi: 10.1073/pnas.94.18.9973.
Actin depolymerizing factors (ADF) are stimulus responsive actin cytoskeleton modulating proteins. They bind both monomeric actin (G-actin) and filamentous actin (F-actin) and, under certain conditions, F-actin binding is followed by filament severing. In this paper, using mutant maize ADF3 proteins, we demonstrate that the maize ADF3 binding of F-actin can be spatially distinguished from that of G-actin. One mutant, zmadf3-1, in which Tyr-103 and Ala-104 (equivalent to destrin Tyr-117 and Ala-118) have been replaced by phenylalanine and glycine, respectively, binds more weakly to both G-actin and F-actin compared with maize ADF3. A second mutant, zmadf3-2, in which both Tyr-67 and Tyr-70 are replaced by phenylalanine, shows an affinity for G-actin similar to maize ADF3, but F-actin binding is abolished. The two tyrosines, Tyr-67 and Tyr-70, are in the equivalent position to Tyr-82 and Tyr-85 of destrin, respectively. Using the tertiary structure of destrin, yeast cofilin, and Acanthamoeba actophorin, we discuss the implications of removing the aromatic hydroxyls of Tyr-82 and Tyr-85 (i.e., the effect of substituting phenylalanine for tyrosine) and conclude that Tyr-82 plays a critical role in stabilizing the tertiary structure that is essential for F-actin binding. We propose that this tertiary structure is maintained as a result of a hydrogen bond between the hydroxyl of Tyr-82 and the carbonyl of Tyr-117, which is located in the long alpha-helix; amino acid components of this helix (Leu-111 to Phe-128) have been implicated in G-actin and F-actin binding. The structures of human destrin and yeast cofilin indicate a hydrogen distance of 2.61 and 2.77 A, respectively, with corresponding bond angles of 99.5 degrees and 113 degrees, close to the optimum for a strong hydrogen bond.
肌动蛋白解聚因子(ADF)是一类对刺激有反应的肌动蛋白细胞骨架调节蛋白。它们既能结合单体肌动蛋白(G-肌动蛋白),也能结合丝状肌动蛋白(F-肌动蛋白),并且在某些条件下,结合F-肌动蛋白后会导致肌动蛋白丝切断。在本文中,我们使用突变的玉米ADF3蛋白,证明了玉米ADF3与F-肌动蛋白的结合在空间上可与G-肌动蛋白的结合区分开来。其中一个突变体zmadf3-1,其酪氨酸-103和丙氨酸-104(分别相当于去整合蛋白的酪氨酸-117和丙氨酸-118)已分别被苯丙氨酸和甘氨酸取代,与玉米ADF3相比,它与G-肌动蛋白和F-肌动蛋白的结合都更弱。第二个突变体zmadf3-2,其中酪氨酸-67和酪氨酸-70都被苯丙氨酸取代,它对G-肌动蛋白的亲和力与玉米ADF3相似,但对F-肌动蛋白的结合被消除。酪氨酸-67和酪氨酸-70这两个酪氨酸分别与去整合蛋白的酪氨酸-82和酪氨酸-85处于等效位置。利用去整合蛋白、酵母丝切蛋白和棘阿米巴肌动蛋白结合蛋白的三级结构,我们讨论了去除酪氨酸-82和酪氨酸-85的芳香羟基的影响(即苯丙氨酸取代酪氨酸的效果),并得出结论,酪氨酸-82在稳定对F-肌动蛋白结合至关重要的三级结构中起关键作用。我们提出,这种三级结构是由酪氨酸-82的羟基与位于长α-螺旋中的酪氨酸-117的羰基之间的氢键维持的,该螺旋的氨基酸成分(亮氨酸-111至苯丙氨酸-128)与G-肌动蛋白和F-肌动蛋白的结合有关。人去整合蛋白和酵母丝切蛋白的结构表明,相应的氢键距离分别为2.61 Å和2.77 Å,键角分别为99.5°和113°,接近强氢键的最佳值。