Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA.
J Gen Physiol. 2010 Feb;135(2):81-97. doi: 10.1085/jgp.200910344.
G protein-coupled receptors (GPCRs) mediate responses to external stimuli in various cell types. Early events, such as the binding of ligand and G proteins to the receptor, nucleotide exchange (NX), and GTPase activity at the Galpha subunit, are common for many different GPCRs. For G(q)-coupled M(1) muscarinic (acetylcholine) receptors (M(1)Rs), we recently measured time courses of intermediate steps in the signaling cascade using Förster resonance energy transfer (FRET). The expression of FRET probes changes the density of signaling molecules. To provide a full quantitative description of M(1)R signaling that includes a simulation of kinetics in native (tsA201) cells, we now determine the density of FRET probes and construct a kinetic model of M(1)R signaling through G(q) to activation of phospholipase C (PLC). Downstream effects on the trace membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP(2)) and PIP(2)-dependent KCNQ2/3 current are considered in our companion paper in this issue (Falkenburger et al. 2010. J. Gen. Physiol. doi:10.1085/jgp.200910345). By calibrating their fluorescence intensity, we found that we selected transfected cells for our experiments with approximately 3,000 fluorescently labeled receptors, G proteins, or PLC molecules per microm(2) of plasma membrane. Endogenous levels are much lower, 1-40 per microm(2). Our kinetic model reproduces the time courses and concentration-response relationships measured by FRET and explains observed delays. It predicts affinities and rate constants that align well with literature values. In native tsA201 cells, much of the delay between ligand binding and PLC activation reflects slow binding of G proteins to receptors. With M(1)R and Gbeta FRET probes overexpressed, 10% of receptors have G proteins bound at rest, rising to 73% in the presence of agonist. In agreement with previous work, the model suggests that binding of PLC to Galpha(q) greatly speeds up NX and GTPase activity, and that PLC is maintained in the active state by cycles of rapid GTP hydrolysis and NX on Galpha(q) subunits bound to PLC.
G 蛋白偶联受体 (GPCR) 介导各种细胞类型对外界刺激的反应。对于许多不同的 GPCR 来说,早期事件(如配体和 G 蛋白与受体的结合、核苷酸交换 (NX) 和 Galpha 亚基的 GTP 酶活性)是共同的。对于 G(q)-偶联的 M(1)毒蕈碱 (乙酰胆碱) 受体 (M(1)R),我们最近使用荧光共振能量转移 (FRET) 测量了信号级联中的中间步骤的时程。FRET 探针的表达改变了信号分子的密度。为了提供包括对天然 (tsA201) 细胞中动力学进行模拟的完整定量描述 M(1)R 信号,我们现在确定 FRET 探针的密度,并通过 G(q) 构建 M(1)R 信号到激活磷脂酶 C (PLC) 的动力学模型。在本期的伴随论文中(Falkenburger 等人,2010 年。J. Gen. Physiol.,doi:10.1085/jgp.200910345),我们考虑了下游对痕量膜脂质磷脂酰肌醇 4,5-二磷酸 (PIP(2)) 和 PIP(2)依赖性 KCNQ2/3 电流的影响。通过校准它们的荧光强度,我们发现我们选择了大约 3000 个荧光标记的受体、G 蛋白或 PLC 分子/μm(2)的质膜用于我们的实验。内源性水平要低得多,每个 μm(2) 为 1-40。我们的动力学模型再现了通过 FRET 测量的时程和浓度-反应关系,并解释了观察到的延迟。它预测了与文献值很好匹配的亲和力和速率常数。在天然的 tsA201 细胞中,配体结合和 PLC 激活之间的大部分延迟反映了 G 蛋白与受体的缓慢结合。当 M(1)R 和 Gbeta FRET 探针过表达时,休息时 10%的受体与 G 蛋白结合,在激动剂存在时上升到 73%。与先前的工作一致,该模型表明 PLC 与 Galpha(q) 的结合大大加快了 NX 和 GTP 酶活性,并且 PLC 通过与 PLC 结合的 Galpha(q) 亚基的快速 GTP 水解和 NX 循环保持在活性状态。