Department of Physiology and Biophysics, University of Washington, Seattle, Washington, USA.
Department of Neurology, RWTH Aachen University, Aachen, Germany.
Prog Mol Biol Transl Sci. 2014;123:219-47. doi: 10.1016/B978-0-12-397897-4.00008-5.
G-protein-coupled receptors mediate responses to external stimuli in various cell types. We are interested in the modulation of KCNQ2/3 potassium channels by the Gq-coupled M1 muscarinic (acetylcholine) receptor (M1R). Here, we describe development of a mathematical model that incorporates all known steps along the M1R signaling cascade and accurately reproduces the macroscopic behavior we observe when KCNQ2/3 currents are inhibited following M1R activation. Gq protein-coupled receptors of the plasma membrane activate phospholipase C (PLC) which cleaves the minor plasma membrane lipid phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) into the second messengers diacylgycerol and inositol 1,4,5-trisphosphate, leading to calcium release, protein kinase C (PKC) activation, and PI(4,5)P2 depletion. Combining optical and electrical techniques with knowledge of relative abundance of each signaling component has allowed us to develop a kinetic model and determine that (i) M1R activation and M1R/Gβ interaction are fast; (ii) Gαq/Gβ separation and Gαq/PLC interaction have intermediate time constants; (iii) the amount of activated PLC limits the rate of KCNQ2/3 suppression; (iv) weak PLC activation can elicit robust calcium signals without net PI(4,5)P2 depletion or KCNQ2/3 channel inhibition; and (v) depletion of PI(4,5)P2, and not calcium/CaM or PKC-mediated phosphorylation, closes KCNQ2/3 potassium channels, thereby increasing neuronal excitability.
G 蛋白偶联受体介导各种细胞类型对外界刺激的反应。我们对 Gq 偶联的 M1 毒蕈碱(乙酰胆碱)受体(M1R)对 KCNQ2/3 钾通道的调制感兴趣。在这里,我们描述了一个数学模型的开发,该模型包含了 M1R 信号级联的所有已知步骤,并准确地再现了我们观察到的宏观行为,即在 M1R 激活后 KCNQ2/3 电流被抑制时。质膜上的 Gq 蛋白偶联受体激活磷脂酶 C(PLC),将质膜中的次要脂质磷脂酰肌醇 4,5-二磷酸(PI(4,5)P2)切割成第二信使二酰甘油和肌醇 1,4,5-三磷酸,导致钙释放、蛋白激酶 C(PKC)激活和 PI(4,5)P2 耗竭。将光学和电学技术与对每种信号成分相对丰度的了解相结合,使我们能够开发出一种动力学模型,并确定(i)M1R 激活和 M1R/Gβ 相互作用很快;(ii)Gαq/Gβ 分离和 Gαq/PLC 相互作用具有中间时间常数;(iii)激活的 PLC 量限制了 KCNQ2/3 抑制的速率;(iv)弱 PLC 激活可以引发强大的钙信号,而不会导致净 PI(4,5)P2 耗竭或 KCNQ2/3 通道抑制;(v)PI(4,5)P2 的耗竭,而不是钙/CaM 或 PKC 介导的磷酸化,关闭 KCNQ2/3 钾通道,从而增加神经元兴奋性。