Department of Mechanical and Aerospace Engineering, Princeton University, New Jersey 08544, USA.
Nano Lett. 2010 Feb 10;10(2):524-8. doi: 10.1021/nl903377u.
The development of a method for integrating highly efficient energy conversion materials onto stretchable, biocompatible rubbers could yield breakthroughs in implantable or wearable energy harvesting systems. Being electromechanically coupled, piezoelectric crystals represent a particularly interesting subset of smart materials that function as sensors/actuators, bioMEMS devices, and energy converters. Yet, the crystallization of these materials generally requires high temperatures for maximally efficient performance, rendering them incompatible with temperature-sensitive plastics and rubbers. Here, we overcome these limitations by presenting a scalable and parallel process for transferring crystalline piezoelectric nanothick ribbons of lead zirconate titanate from host substrates onto flexible rubbers over macroscopic areas. Fundamental characterization of the ribbons by piezo-force microscopy indicates that their electromechanical energy conversion metrics are among the highest reported on a flexible medium. The excellent performance of the piezo-ribbon assemblies coupled with stretchable, biocompatible rubber may enable a host of exciting avenues in fundamental research and novel applications.
开发一种将高效能量转换材料集成到可拉伸、生物相容橡胶上的方法,可以在可植入或可穿戴能量收集系统中取得突破。压电晶体作为机电耦合的智能材料的一个特别有趣的子集,它们可以作为传感器/执行器、生物 MEMS 器件和能量转换器发挥作用。然而,这些材料的结晶通常需要高温才能达到最高效率,这使得它们与对温度敏感的塑料和橡胶不兼容。在这里,我们通过提出一种可扩展和并行的工艺来克服这些限制,该工艺可将锆钛酸铅的晶态纳米厚带从主体基板转移到宏观面积上的柔性橡胶上。通过压电力显微镜对这些纳米带进行的基础特性表征表明,它们的机电能量转换指标在柔性介质中属于最高之列。与可拉伸、生物相容的橡胶相结合的压电纳米带组件具有优异的性能,可能会为基础研究和新型应用开辟一系列令人兴奋的途径。