Department of Chemical and Biological Engineering, Princeton University , Princeton, New Jersey 08544, United States.
Nano Lett. 2013;13(12):6197-202. doi: 10.1021/nl4035708. Epub 2013 Dec 2.
Piezoelectric nanowires are an important class of smart materials for next-generation applications including energy harvesting, robotic actuation, and bioMEMS. Lead zirconate titanate (PZT), in particular, has attracted significant attention, owing to its superior electromechanical conversion performance. Yet, the ability to synthesize crystalline PZT nanowires with well-controlled properties remains a challenge. Applications of common nanosynthesis methods to PZT are hampered by issues such as slow kinetics, lack of suitable catalysts, and harsh reaction conditions. Here we report a versatile biomimetic method, in which biotemplates are used to define PZT nanostructures, allowing for rational control over composition and crystallinity. Specifically, stoichiometric PZT nanowires were synthesized using both polysaccharide (alginate) and bacteriophage templates. The wires possessed measured piezoelectric constants of up to 132 pm/V after poling, among the highest reported for PZT nanomaterials. Further, integrated devices can generate up to 0.820 μW/cm(2) of power. These results suggest that biotemplated piezoelectric nanowires are attractive candidates for stimuli-responsive nanosensors, adaptive nanoactuators, and nanoscale energy harvesters.
压电纳米线是下一代应用的一类重要智能材料,包括能量收集、机器人致动和生物 MEMS。特别是锆钛酸铅 (PZT) 因其卓越的机电转换性能而引起了广泛关注。然而,具有良好控制性能的结晶 PZT 纳米线的合成能力仍然是一个挑战。常见纳米合成方法在 PZT 中的应用受到一些问题的阻碍,例如动力学缓慢、缺乏合适的催化剂和苛刻的反应条件。在这里,我们报告了一种通用的仿生方法,其中使用生物模板来定义 PZT 纳米结构,从而可以合理地控制组成和结晶度。具体来说,使用多糖(海藻酸钠)和噬菌体模板合成了化学计量的 PZT 纳米线。在极化后,这些纳米线的压电常数高达 132 pm/V,是报道的 PZT 纳米材料中的最高值之一。此外,集成器件可以产生高达 0.820 μW/cm(2)的功率。这些结果表明,生物模板化压电纳米线是刺激响应纳米传感器、自适应纳米致动器和纳米级能量收集器的有吸引力的候选材料。