Suppr超能文献

MEK 调节力波动诱导的犬气管平滑肌再伸长。

MEK modulates force-fluctuation-induced relengthening of canine tracheal smooth muscle.

机构信息

Section of Pulmonary Medicine, Dept of Pediatrics, The University of Chicago, 5841 S. Maryland Avenue, MC4064, Chicago, IL 60637, USA.

出版信息

Eur Respir J. 2010 Sep;36(3):630-7. doi: 10.1183/09031936.00160209. Epub 2010 Jan 28.

Abstract

Tidal breathing, and especially deep breathing, is known to antagonise bronchoconstriction caused by airway smooth muscle (ASM) contraction; however, this bronchoprotective effect of breathing is impaired in asthma. Force fluctuations applied to contracted ASM in vitro cause it to relengthen, force-fluctuation-induced relengthening (FFIR). Given that breathing generates similar force fluctuations in ASM, FFIR represents a likely mechanism by which breathing antagonises bronchoconstriction. Thus it is of considerable interest to understand what modulates FFIR, and how ASM might be manipulated to exploit this phenomenon. It was demonstrated previously that p38 mitogen-activated protein kinase (MAPK) signalling regulates FFIR in ASM strips. Here, it was hypothesised that the MAPK kinase (MEK) signalling pathway also modulates FFIR. In order to test this hypothesis, changes in FFIR were measured in ASM treated with the MEK inhibitor, U0126 (1,4-diamino-2,3-dicyano-1,4-bis[2-aminophenylthio]butadiene). Increasing concentrations of U0126 caused greater FFIR. U0126 reduced extracellular signal-regulated kinase 1/2 phosphorylation without affecting isotonic shortening or 20-kDa myosin light chain and p38 MAPK phosphorylation. However, increasing concentrations of U0126 progressively blunted phosphorylation of high-molecular-weight caldesmon (h-caldesmon), a downstream target of MEK. Thus changes in FFIR exhibited significant negative correlation with h-caldesmon phosphorylation. The present data demonstrate that FFIR is regulated through MEK signalling, and suggest that the role of MEK is mediated, in part, through caldesmon.

摘要

呼吸潮气量,特别是深呼吸,已知可拮抗气道平滑肌(ASM)收缩引起的支气管收缩;然而,哮喘患者的这种呼吸保护作用受损。体外施加于收缩的 ASM 的力波动使其重新伸长,力波动诱导的再伸长(FFIR)。鉴于呼吸在 ASM 中产生类似的力波动,FFIR 代表了呼吸拮抗支气管收缩的一种可能机制。因此,了解什么调节 FFIR 以及如何操纵 ASM 以利用这种现象具有重要意义。先前已经证明,p38 丝裂原活化蛋白激酶(MAPK)信号调节 ASM 条带中的 FFIR。在这里,假设 MAPK 激酶(MEK)信号通路也调节 FFIR。为了验证这一假设,用 MEK 抑制剂 U0126(1,4-二氨基-2,3-二氰基-1,4-双[2-氨基苯基硫代]丁二烯)处理 ASM 后测量 FFIR 的变化。U0126 的浓度增加导致 FFIR 增加。U0126 降低细胞外信号调节激酶 1/2 的磷酸化,而不影响等张缩短或 20kDa 肌球蛋白轻链和 p38 MAPK 磷酸化。然而,U0126 的浓度增加逐渐使高相对分子质量钙调蛋白(h-caldesmon)的磷酸化减弱,MEK 的下游靶标。因此,FFIR 的变化与 h-caldesmon 磷酸化呈显著负相关。本数据表明,FFIR 通过 MEK 信号调节,并且表明 MEK 的作用部分通过钙调蛋白介导。

相似文献

引用本文的文献

2
The Strain on Airway Smooth Muscle During a Deep Inspiration to Total Lung Capacity.深吸气至肺总量时气道平滑肌所承受的张力。
J Eng Sci Med Diagn Ther. 2019 Feb;2(1):0108021-1080221. doi: 10.1115/1.4042309. Epub 2019 Jan 18.
4
Airway contractility in the precision-cut lung slice after cryopreservation.冻存后肺切片的气道收缩性。
Am J Respir Cell Mol Biol. 2014 May;50(5):876-81. doi: 10.1165/rcmb.2013-0166MA.
5
Airway smooth muscle in the pathophysiology and treatment of asthma.气道平滑肌在哮喘病理生理学和治疗中的作用。
J Appl Physiol (1985). 2013 Apr;114(7):834-43. doi: 10.1152/japplphysiol.00950.2012. Epub 2013 Jan 10.
6
Dilatation of the constricted human airway by tidal expansion of lung parenchyma.肺实质的潮汐膨胀使狭窄的人体气道扩张。
Am J Respir Crit Care Med. 2012 Aug 1;186(3):225-32. doi: 10.1164/rccm.201202-0368OC. Epub 2012 Jun 7.
8
Emergence of airway smooth muscle functions related to structural malleability.气道平滑肌功能与结构可塑性关系的出现。
J Appl Physiol (1985). 2011 Apr;110(4):1130-5. doi: 10.1152/japplphysiol.01192.2010. Epub 2010 Dec 2.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验