Suppr超能文献

相似文献

2
Strontium-substituted hydroxyapatite stimulates osteogenesis on poly(propylene fumarate) nanocomposite scaffolds.
J Biomed Mater Res A. 2019 Mar;107(3):631-642. doi: 10.1002/jbm.a.36579. Epub 2018 Nov 25.
4
Physical properties and cellular responses to crosslinkable poly(propylene fumarate)/hydroxyapatite nanocomposites.
Biomaterials. 2008 Jul;29(19):2839-48. doi: 10.1016/j.biomaterials.2008.03.030. Epub 2008 Apr 9.
5
Fabrication of porous ultra-short single-walled carbon nanotube nanocomposite scaffolds for bone tissue engineering.
Biomaterials. 2007 Oct;28(28):4078-90. doi: 10.1016/j.biomaterials.2007.05.033. Epub 2007 Jun 18.
6
Solvent-free polymer/bioceramic scaffolds for bone tissue engineering: fabrication, analysis, and cell growth.
J Biomater Sci Polym Ed. 2014;25(16):1856-74. doi: 10.1080/09205063.2014.953016. Epub 2014 Sep 2.
8
Design and fabrication of bone tissue scaffolds based on PCL/PHBV containing hydroxyapatite nanoparticles: dual-leaching technique.
J Biomed Mater Res A. 2021 Jun;109(6):981-993. doi: 10.1002/jbm.a.37087. Epub 2020 Sep 8.
9
Extrusion-based 3D printing of poly(propylene fumarate) scaffolds with hydroxyapatite gradients.
J Biomater Sci Polym Ed. 2017 Apr;28(6):532-554. doi: 10.1080/09205063.2017.1286184. Epub 2017 Feb 5.

引用本文的文献

3
Bioprinting for Liver Transplantation.
Bioengineering (Basel). 2019 Oct 10;6(4):95. doi: 10.3390/bioengineering6040095.
5
Strontium-substituted hydroxyapatite stimulates osteogenesis on poly(propylene fumarate) nanocomposite scaffolds.
J Biomed Mater Res A. 2019 Mar;107(3):631-642. doi: 10.1002/jbm.a.36579. Epub 2018 Nov 25.
7
High Performance, Low Cost Carbon Nanotube Yarn based 3D Printed Electrodes Compatible with a Conventional Screen Printed Electrode System.
IEEE Int Symp Med Meas Appl. 2017 May;2017:100-105. doi: 10.1109/MeMeA.2017.7985857. Epub 2017 Jul 20.
8
Extrusion-based 3D printing of poly(propylene fumarate) scaffolds with hydroxyapatite gradients.
J Biomater Sci Polym Ed. 2017 Apr;28(6):532-554. doi: 10.1080/09205063.2017.1286184. Epub 2017 Feb 5.
9
Novel porous poly(propylene fumarate-co-caprolactone) scaffolds fabricated by thermally induced phase separation.
J Biomed Mater Res A. 2017 Jan;105(1):226-235. doi: 10.1002/jbm.a.35862. Epub 2016 Oct 14.
10
Cryotemplation for the Rapid Fabrication of Porous, Patternable Photopolymerized Hydrogels.
J Mater Chem B. 2014 Jul 28;2(28):4521-4530. doi: 10.1039/C4TB00585F.

本文引用的文献

2
Preparation and characterization of nano-hydroxyapatite/polymer composite scaffolds.
J Mater Sci Mater Med. 2008 Nov;19(11):3429-35. doi: 10.1007/s10856-008-3499-x. Epub 2008 Jun 24.
3
Physical properties and cellular responses to crosslinkable poly(propylene fumarate)/hydroxyapatite nanocomposites.
Biomaterials. 2008 Jul;29(19):2839-48. doi: 10.1016/j.biomaterials.2008.03.030. Epub 2008 Apr 9.
5
Polylactide based nanostructured biomaterials and their applications.
J Nanosci Nanotechnol. 2007 Aug;7(8):2596-615. doi: 10.1166/jnn.2007.909.
6
Biocompatibility of novel polymer-apatite nanocomposite fibers.
J Biomed Mater Res A. 2008 Jan;84(1):44-53. doi: 10.1002/jbm.a.31338.
8
Assessment of bone ingrowth into porous biomaterials using MICRO-CT.
Biomaterials. 2007 May;28(15):2491-504. doi: 10.1016/j.biomaterials.2007.01.046. Epub 2007 Feb 20.
9
Nondestructive micro-computed tomography for biological imaging and quantification of scaffold-bone interaction in vivo.
Biomaterials. 2007 May;28(15):2479-90. doi: 10.1016/j.biomaterials.2007.01.017. Epub 2007 Jan 10.
10
A poly(lactide-co-glycolide)/hydroxyapatite composite scaffold with enhanced osteoconductivity.
J Biomed Mater Res A. 2007 Jan;80(1):206-15. doi: 10.1002/jbm.a.30836.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验